You can download the lectures here. We will try to upload lectures prior to their corresponding classes. 课程介绍(Course Intro) tl;dr: Introduction to natural language processing. [notes] [video] [slides] 课程大纲(Content) tl;dr: 介绍课程框架和课程计划。课程涵盖NLP中的基础概念和模型、针对NLP的机器学习算法以及NLP中的神经网络模型 [notes] [video] [slides] 自然语言处理及其发展历程(History of Natural Language Processing) tl;dr: 自然语言处理的介绍及其发展历程,包括:基于规则的方法,基于统计(传统机器学习)的方法以及基于神经网络的方法 [notes] [video] [slides] Counting relative frequencies tl;dr: 概率模型,语言模型,朴素贝叶斯文本分类,特征向量,贝叶斯公式 [video] [slides] Feature Vectors tl;dr: 特征向量,贝叶斯公式,聚类,文本分类 [video] [slides] Discriminative Linear Classifiers tl;dr: 对数线性模型,SGD,SVM,感知机 [video] [slides] Using Information Theory tl;dr: 信息论,最大熵模型,KL散度,交叉熵与困惑度 [video] [slides] Hidden Variables tl;dr: 隐变量,期望最大算法, [video] [slides] Generative Sequence Labeling tl;dr: 序列标注,隐马尔可夫模型,边缘概率,无监督的HMM [video] [slides] Discriminative Sequence Labeling tl;dr: 判别式序列标注,最大熵马尔可夫模型,标签偏置,条件随机场CRF [video] [slides] Sequence Segmentation tl;dr: 序列切分,半马尔可夫条件随机场,最大边缘模型 [video] [slides] Neural Networks tl;dr: 多层感知机模型,激活函数 [video] [slides] Neural Networks tl;dr: [video] [slides] Predicting Tree Structures tl;dr: [video] [slides] Transition-based method for structure prediction tl;dr: [video] [slides] Representation learning tl;dr: [video] [slides] Neural structured prediction tl;dr: [video] [slides] Working with two texts tl;dr: [video] [slides]