You can download the lectures here. We will try to upload lectures prior to their corresponding classes.

  • 课程介绍(Course Intro)
    tl;dr: Introduction to natural language processing.
    [notes] [video] [slides]
  • 课程大纲(Content)
    tl;dr: 介绍课程框架和课程计划。课程涵盖NLP中的基础概念和模型、针对NLP的机器学习算法以及NLP中的神经网络模型
    [notes] [video] [slides]
  • 自然语言处理及其发展历程(History of Natural Language Processing)
    tl;dr: 自然语言处理的介绍及其发展历程,包括:基于规则的方法,基于统计(传统机器学习)的方法以及基于神经网络的方法
    [notes] [video] [slides]
  • Counting relative frequencies
    tl;dr: 概率模型,语言模型,朴素贝叶斯文本分类,特征向量,贝叶斯公式
    [video] [slides]
  • Feature Vectors
    tl;dr: 特征向量,贝叶斯公式,聚类,文本分类
    [video] [slides]
  • Discriminative Linear Classifiers
    tl;dr: 对数线性模型,SGD,SVM,感知机
    [video] [slides]
  • Using Information Theory
    tl;dr: 信息论,最大熵模型,KL散度,交叉熵与困惑度
    [video] [slides]
  • Hidden Variables
    tl;dr: 隐变量,期望最大算法,
    [video] [slides]
  • Generative Sequence Labeling
    tl;dr: 序列标注,隐马尔可夫模型,边缘概率,无监督的HMM
    [video] [slides]
  • Discriminative Sequence Labeling
    tl;dr: 判别式序列标注,最大熵马尔可夫模型,标签偏置,条件随机场CRF
    [video] [slides]
  • Sequence Segmentation
    tl;dr: 序列切分,半马尔可夫条件随机场,最大边缘模型
    [video] [slides]
  • Neural Networks
    tl;dr: 多层感知机模型,激活函数
    [video] [slides]
  • Neural Networks
    tl;dr:
    [video] [slides]
  • Predicting Tree Structures
    tl;dr:
    [video] [slides]
  • Transition-based method for structure prediction
    tl;dr:
    [video] [slides]
  • Representation learning
    tl;dr:
    [video] [slides]
  • Neural structured prediction
    tl;dr:
    [video] [slides]
  • Working with two texts
    tl;dr:
    [video] [slides]