
Exercises

1. Suppose that the vocabulary is {cat, dog, car, bus, ran, fast, the, and, sat}.
There are two document classes, namely animal and vehicle. The training
dataset of a text classification model consists of only three sentences, which
include “the dog ran fast”, “the cat sat” and “the car and the bus ran
fast”. The first two sentences are labeled animal and the last sentence is
labeled vehicle.

(a) Draw count-based vector representations of all three sentences using
bag-of-word features.

(b) Manually cluster the training examples using 2-means.

(c) Manually calculate the values of all parameters for a Näıve Bayes
classifier, using them to predict the class label of each training example,
and the class label of the unseen test example “the dog sat”.

(d) Manually calculate the feature vectors for multi-class SVM for all the
training example above, and the feature vector of the unseen example “the
dog sat” if the output is vehicle.

2. Verify the 2-means and 3-means clustering results for the examples in
Table 1 (b), discussed in the end of Section 3.1.1.

3. Feature vectors are arrays mathematically. On the other hand, they are
highly sparse. Discuss the advantages of using hash table to store feature
vectors. Compare the time complexity of calculating model scores of SVMs
and perceptrons using array data structures and hash table data structures
to implement feature vectors and parameter vectors.

4. k-nearest-neighbor (kNN) is a non-parametric text classifier, which
uses no fixed set of model parameters, but takes instance-based learning.
Given a set of inputs, it records the feature representation of each input,
and their correctponding output labels. For testing, given an unseen input,
kNN uses the k nearest neighbours of the input in the feature vector space
to determine the output class label. In particular, Euclidean distance can
be used to measure vector space distance, and simple voting of training
data class labels can be used to determine the class label of the test input.

(a) Compare kNN with Näıve Bayes for their training speed and testing
speed theoretically.

(b) Does kNN require linear separable training data?

(c) Does the value of k affect the decision of kNN? Given examples to
demonstrate your conclusion.

5. Prove that the distance between a vector v⃗0 and a hyperplane ω⃗T v⃗+b = 0
is

r =
|ω⃗T v⃗0 + b|

||ω⃗||

1



(Hint: find a vector v⃗1 on the hyperplane, such that v⃗1−v⃗0 is perpendicular
to the hyperplane. You have ω⃗T v⃗1 + b = 0 (v⃗1 on hyperplane) and v⃗1 −
v⃗0 = αω⃗ (perpendicular to hyperplane). Solve the equations for v⃗1. The
distance is then |v⃗1 − v⃗0|.)

6. Suppose that we have defined three feature templates for document clas-
sification, including c, wc, and bi · c, where c represents a document class,
w represents a vocabulary word and bi represents a bigram.

(a) How large is the size of a feature vector for representing any labeled
document?

(b) The size of such a feature vector can be intolerably large due to the
number of bigrams that theoretically exist, which is |V |2, where |V | is the
vocabulary size. In practice, one can define elements in a feature vector
using only feature instances that exist in a set of training data. As a
result, OOV words will not exist in feature vectors. How can this method
reduce the number of possible feature instances for the feature templates
c, wc and bi · c, respectively?
(c) If feature vectors are defined using the method (b) above, what happens
if a feature instance in an unseen test sample is not an element in the
feature vector defined using the training data? For this test instance, will
a perceptron model trained using the feature vector in (b) give a different
classs label compared to one trained using the feature vector in (a)?

(d) When training SVMs and perceptrons, we consider not only gold-
standard training instances, but also violated constraints, namely incor-
rectly labeled training inputs that receive high model scores. These in-
correctly labeled samples are referred to as negative examples, in contrast
to the positive examples in the gold-standard training data. Intuitively,
there can be feature instances from negative examples that do not exist
in the feature vectors defined in (b). For example, the feature instance
⟨w =“football”, c =“food”⟩ from a negative example is highly unlikely
to exist in a set of gold-standard training data. We call such feature in-
stances negative features. It has been shown empirically that using
negative features to augment the feature vector defined in (b) can lead to
better results by SVMs and perceptrons. Discuss why negative features
can be useful.

(e) Extract feature instances for the document “A cat sat on the mat.”
with the class label “hobby”. (Note that tokenisation is a necessary pre-
processing step).

(f) Extract feature instances for the document “The cat sat on the mat.”
with the class label “sports”. If the instance in (e) is a gold-standard
example, then the instance here is a negative example. Extract feature
instances for this sample. Which feature instances are likely negative
features?
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7. Recall the WSD task introduced in Chapter 1. Given a word (e.g. bank)
and a context window in a sentence, which typically consists of k words to
the left and k words to the right of the target word, the goal is to predict
the sense of the target word in the sentence (e.g. financial bank).

Given a training corpus D = {(xi, yi)}|Ni=1, where xi = (wi, ci), with ci
denoting the context window of wi, WSD can be modelled as a supervised
classification task. It turns out that two classes of features are highly
useful. One is bag-of-word features, with template w ∈ ci, and the other
is collocational features, with 2k different feature templates wc

j ∈ ci, j ∈
[−k,−k+1, . . . ,−1, 1, 2, . . . , k]. Here j denotes the relative position of the
context word wc

j with respect to the target word. The feature template
wc

j can also be denoted as wPosition(w), which combines a word and
its relative position index. For example, given a context window with
k = 3 “went to a bank to withdraw some”, the feature template wc

−3 is
instantiated once with “went”, and the feature template wc

2 is instantiated
once with the word “withdraw”.

(a) If only bag-of-word features are used, derive a Näıve Bayes classifier
for the WSD task.

(b) The model above can be extended by integrating collocational fea-
tures also, resulting in a “bag-of-features” Näıve Bayes model, where each
feature instances is generated conditionally independently given a word
sense. While more features can empirically improve the accuracies, do
you find this model theoretically elegant? Why?

(c) If both bag-of-word and collocational features are used for discrimina-
tive WSD, and the vocabulary size is |V |, how large is a feature vector for
|C| word senses? (Hint: there are 2k + 1 combined feature templates in
total)?

(d) Further, if position-sensitive part-of-speech (POS) labels in the context
window are also used as features, and there are in total |L| different POS
labels, how large is a feature vector?

8. Recall the multi-class SVM definition in Eq ??, in which we have a bias
term b, which can be regarded as a prior for the positive class. One
alternative way to define Eq ?? is to have a bias bc for each individual
class c, resulting in ˆ⃗ω =ω⃗

1
2 ||ω⃗||

2,
s.t.foralli, xi ∈ D { ω⃗T (xi, ci) + bci ≥ 1
forallc ̸= ci,ω⃗

T (xi, c) + bc ≤ −1

Now follow the same simplification process of Eq 3.7 and Eq 3.8, deriving
a definition of multi-class SVM with multiple bias terms. Which features
in the Naive Bayes model do these bias terms correspond to?
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Features d1 d2 d3 d4 d1 d2 d3 d4

w1 =“a” 1 1 0 2 0.415 0.415 0 0.83
w2 =“ah” 0 0 1 0 0 0 2.0 0

. . .
w1001 =“book” 1 1 0 1 0.415 0.415 0 0.415
w2017 =“bought” 1 0 0 0 2.0 0 0 0
w2100 =“boy” 0 0 0 1 0 0 0 2.0
w3400 =“I” 0 0 1 1 0 0 1.0 1.0
w4400 =“is” 0 1 0 0 0 2.0 0 0

. . .
w5002 =“know” 0 0 1 0 0 0 2.0 0
w6013 =“reading” 0 1 0 1 0 1.0 0 1.0
w7034 =“saw” 0 0 0 1 0 0 0 2.0
w8400 =“Tim” 1 1 1 0 0.415 0.415 0.415 0

. . .
w13200 =“,” 0 0 1 0 0 0 2.0 0
w13201 =“.” 1 0 1 0 1.0 0 1.0 0

. . .
(a) count-based vectors (b) TF-IDF vectors

Table 1: Vector representations of documents.
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