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Introduction

Overall, this book has been designed as a textbook to support senior undergraduate
and graduate courses on natural language processing. The focus is on the algorith-
mic side rather than the linguistic side of the field. Depending on the curriculum
and educational objectives, content selection can be made for a balance of coverage
and depth. For example, if a linguistics course has not been taught as a prerequi-
site, then more time can be spent on introducing linguistic knowledge such as what
is syntax and what are part-of-speech tags. If general machine learning courses are
taught as pre-requisite classes, then relevant content can be taught at faster paces
and deeper machine learning techniques for natural language processing can be
taught.

Below we first discuss some general suggestions for using the book, before
introducing the content organization and correspondingly term plans for different
typical courses.

Teaching Suggestions

Unless machine learning courses have been takes in-depth as prerequisites, it can
be infeasible to cover all content of the book in a single semester. Depending on
the target student and teaching goals, a selection of relevant content is necessary.
In addition, the level and details and amount of time dedicated to each concept are
also worth consideration. To our experience, it is of great importance to choose
a proper level and details in order to make the learning curve gentle. We aim to
provide teaching slides with as much detail as possible on the book website, so that
content selection can be made easy. The slides are updated periodically.

The book offers introduction, equations, algorithms and proofs, which are the
main content classroom teaching. For student learning, written exercises and pro-
gramming are also necessary. We provide example answers in this instructor man-
ual, which will be updated periodically with corrections and additions. Example
code is also provided at GitHub, a link for which can be found at the book web-
site. Outstanding student code will be uploaded to the website so that the students
have multiple references. With the above materials, a standard semester plan can
include lecture sessions, small group tutor sessions and lab sessions. Evaluation
can be made with both written exercises and coding projects.
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For each major algorithm, there are three rough levels of understanding depth.
At the shallowest level, the student gains awareness of the algorithm, knowing the
basic principles and the situations where it is used. At a deeper level, the student
should know the algorithm at the pseudo code level, being able to tell important
characteristics such as the asymptotic complexity, use software libraries and make
simple modifications. At the deepest level, the student is trained to understand
the algorithm in full detail, so that they can code the algorithm from scratch and
make innovative adaptations to different task scenarios. For example, in sequence
labeling tasks, Viterbi algorithm and forward/backward algorithms for conditional
random fields (CRF) had wide influence in NLP. Therefore, research students are
recommended to understand them in the coding level. However, a course that focus
on neural NLP may choose to introduce the above algorithms only at the shallowest
level. Exercises and coding projects should be given according to the outcome
expectations.

Content

The book is organised in three main parts. Part I introduces the basic concepts
in NLP and its relevant machine learning principles. It is recommended to teach
this part in detail, because it lays a foundation for introducing the second and third
parts. For students who have learned machine learning in general, this part can
be taught at a faster pace. However, it is recommended not to skip it because
the concepts are discussed from the NLP perspective and connects strongly with
subsequent contents. Even student who are familiar with relevant machine learning
algorithms can benefit from learning the content.

Part II discusses structured prediction, which consists of tasks that are rather
unique for NLP (and a few relevant fields such as bioinformatics). This part fo-
cus on statistical methods, which are a natural extension of the methods discussed
in Part I for classification, thereby demonstrat the challenges brought up by com-
plex output structures. As examples of structured prediction, sequence labeling,
sequence segmentation and tree prediction are discussed. In addition, transition-
based structured prediction is discussed as a framework for discriminative model-
ing, and Bayesian learning is introduced as a general extension to the generative
models.

Part III focuses on neural models for NLP. It extends the linear models in Parts
I and II into deep neural networks, drawing the connections and differences. While
discussing neural frameworks for text classification, sequence labeling, sequence
segmentation and tree prediction, this part also introduces tasks that are more easily
solved using neural network models only, such as sequence-to-sequence tasks. In
addition, pre-training is discussed in detail, and neural latent variable models are
introduced as general extensions to discrete latent variable models.
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Themes

Connections between chapters can be viewed in themes. Below we list typical
themes for facilitating the selection of contents.

Generative models. Generative models are first introduced in Chapter 2, where
the concept of parameterisation is introduced, and basic probabilistic modeling is
discussed. We discuss a set of techniques for parameterising a generative model,
which breaks a joint probability into less sparse parameters by using Bayes rule,
probability chain rule and making independence assumptions. The same tech-
niques are used to parameterise n-gram language models, Naive Bayes text classi-
fiers (Chapter 2), Hiddden Markov Models (Chapter 7) and Probabilistic Context
Free Grammar models (Chapter 10). We draw plate notations to describe such
generative models, which are then unified into Bayesian networks in Chapter 12.

Discriminative models. We introduce feature vectors as a means to turn linguis-
tic tasks into mathematical problems in Chapter 3, where classification an cluster-
ing are discussed as two related problems in the vector space. Then we introduce
perceptrons, SVMs and log-linear models are three typical discriminative text clas-
sifiers, unifying them into one generalised perceptron model in Chapter 4, showing
that the main difference between them is the loss function (including the regular-
isation term). In Part II, the same discriminative modeling techniques are applied
for structured tasks, resulting in structured SVM, conditional random fields(CRF),
semi-CRFs etc, and the underlying principles is repeatedly seen on different struc-
tures. In Part III the generalised perceptron is extended into a multi-layer percep-
tron, which leads to discussion of representation learning.

Neural models and statistical models. Neural models always reflect their coun-
terpart statistical models. Chapters 13 and 14 correspond to Chapters 3 and 4 for
discriminative text classification. Chapter 15 corresponds to Chapters 7, 8, 9 and
10 for graph-based structured prediction, and Chapter 11 for transition-based struc-
tured prediction.

Latent variables. Chapters 6, 12 and 18 are dedicated to latent variables. In
Chapter 6, the problem of hidden variables is presented, and several basic ideas
for dealing with hidden variables are given. Expectation-maximisation (EM) algo-
rithm are discussed in detail. Chapter 12 revisits hidden variables under a Bayesian
network setting, where sampling techniques are used. Chapter 18 discusses latent
variables in neural networks, introducing generalised EM algorithms and varia-
tional models.

Optimisation techniques. The only optimiser that we choose to introduce is
stochastic gradient descent (SGD), which is used to train SVMs, perceptrons, log-
linear models(Chapter 4) and neural networks(Chapter 13 and 14), for both text
classification and various structured prediction tasks.
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Example Course Structures

Undergraduate course with a focus on engineering
This course is designed for computer science students to learn the introductory

level knowledge concerning NLP, being able to build neural network models for
solving typical problems. It should be taught in 14 — 18 weeks with 2 hours
lecture each week. Consider 1 hour tutoring session (problem solving and question
answering) and 1 hour lab session.

Chapters 1 — 5 are taught in the first 5 — 7 weeks. The goal is to teach stu-
dents the basics of generative and discriminative modeling, the generalised percep-
tron algorithm and the basics of information theory and loss function design. The
students should have hands-on programming of Naive Bayes text classification,
TF-IDF document vector calculation, k-means clustering, at least one model out of
SVM, perceptron and logistic regression, and basic word vector forms. Sections
5.1.1 to 5.1.3 can be optional.

Chapters 13 — 14 are taught in 4 weeks. Section 14.2 can be optional given
limited time. The main goal of teaching is to learn the basics of neural network
modeling. The students should have hands-on programming for multi-layer per-
ceptrons, CNN, pooling, LSTM and use various SGD variants such as AdaGrad.

Chapter 15 should be taught in 2 weeks, with only Section 15.1 and 15.2. The
goal is to learn the basis of structured prediction. There is no need to discuss
local modeling and global modeling because Part II of the book is skipped, and
by default all the models taught in this course are local models. More time can be
spent introducing sequence labeling tasks and tree prediction tasks such as parsing.
Chapter 11 should be taught as background where necessary, when transition-based
models are discussed. The students should have hands-on programming on both
graph-based and transition-based models.

Section 16.1 should be taught in 1–2 weeks. The goal is to learn the basics of
a sequence to sequence problem. The students should have hands-on coding using
Transformer for a machine translation or text summarization task.

Chapter 17 should be taught in 1 — 2 weeks. The goal is to learn the basic
knowledge of word embeddings. The students should have hands-on program-
ming using word2vec and GloVe, viewing the t-SNE visualizations. In addition,
they should have hands-on programming using BERT or other pre-trained language
models. Section 17.3 can be made optional.

Undergraduate course with a research focus or junior graduate course
This course prepares junior research students to enter the NLP field. It should

be taught in 14 — 18 weeks with 2 hours lecturing each week, with one hour
or more tutoring (problem solving and question answering session) and 2 hours
practical session.

The first 6 chapters should be taught in 6 — 8 weeks. It gives the students
the foundations of generative and discriminative modeling. Relevant content can
be taught in faster pace if the students already have machine learning background.
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Programming exercises should ideally be done on most concepts.
Chapters 7 and 8 and Section 9.1 should be taught in 2 — 3 weeks. The goal

is to teach the challenges of sequence labeling, understanding how the techniques
of generative and discriminative modeling can be extended to structured prediction
tasks from text classification tasks. The students should have programming exer-
cises on HMM training and Viterbi algorithms. It is recommended that both CRF
and structured perceptron are assigned for programming exercises. According to
student background and time, forward-backward algorithm and EM algorithms can
be skipped.

Chapter 11 should be taught in 1–2 weeks with necessary discussion of Section
9.3. Introduction should be made on segmentation tasks and parsing. Programming
may be taken optional largely due to the fact that feature engineering is not partic-
ularly relevant in current NLP research.

Chapters 13 — 14 should be taught in 2–3 weeks. The students are expected
to build neural network models for classification using CNN, pooling and LSTM.
They should have programming exercises for all relevant neural models, playing
with hyperparmeters and optimisation algorithms. Section 14.2 can be made op-
tional if time is limited.

Chapter 15 should taught in 1 week with Section 15.3 being optional. The stu-
dents should learn how to use neural networks for structured prediction, building
graph- and transition-based models for sequence labeling and parsing. This chap-
ter should be taught with a reference to Chapters 7, 8 and 11. Programming is
recommended for building a transition-based model also.

Chapter 16 should be taught in 1 or 2 weeks. The students should learn sequence-
sequence modeling, text matching and multi-hop reasoning models. Programming
exercises should be made using Transformer for text-to-text tasks and machine
reading comprehension tasks.

Chapter 17 should be taught in 1 or 2 weeks. The students should learn the ba-
sics of word embeddings and its intrinsic and extrinsic evaluation methods. They
should be assigned programming exercises using BERT and other pre-trained lan-
guage models. They should know the basics of transfer learning.

If more time is available Chapter 12 or Chapter 18 can be selected for 2 weeks
teaching.

More in-depth courses on NLP
If more time can be devoted to the task, the instructor can consider Chapter

10 for parsing, which gives much information about extending generative and dis-
criminative techniques to tree structure prediction. When this is given, Section 15.3
can be taught also. Chapter 9 can be given in more detail with regard to semi-CRF.

Exercises
Most of the exercises are comprehensive. It can take much time to answer

questions such as 2.5 and 6.8. Correctly answering such questions allows a student
to fully understand the algorithms discussed. This should be considered when
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making homework assignments.



Chapter 1 Reference Answers

1.1 (a) I ’m a student .
(b) He didn ’t return Mr. Smith ’s book.
(c) We have no useful information on whether users are at risk , said James A.
Talcott of Boston ’s Dana-Farber Cancer Institute .

1.2 "They can fish"
(1) PRP MD

They can fish .

ROOT

nsubj

aux punct

(2) PRP VB NN

They can fish .

ROOT

nsubj obj
punct

1.3 (a)

9
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S

.

.

VP

PP

NN

NN

telephone

NNP

my

IN

with

NP

NN

man

DT

the

VBD

saw

NP

NNP

I

(b)

S

.

.

VP

NP

PP

NN

NN

wallet

NNP

my

IN

with

NN

man

DT

the

VBD

saw

NP

NNP

I

Difference: In (a) “telephone” is with me while the “wallet” is with the man in
(b).

1.4 I saw her duck

NP (S\ NP)/NP NP/N N
<

NP
>

S\ NP
<

S
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I saw her duck

NP (S\ NP)/NP NP/(S\NP) (S\NP)/NP/NP
<

NP
>

S\ NP
<

S

1.5 They both identify spans in the input sentence that correspond to certain nom-
inal entities. While NP chunking extracts all noun phrases, NER extracts only
named entities.

1.6 6 lemmas. Noun: a power tool for cutting wood; hand tool having a blade for
cutting; a condensed but embody some important fact of experience that is taken
as true by many people. Verb: cut with a saw; to move sth backwards and forwards
on sth as if using a saw; the past tense of see.

1.7 They can occur in similar contexts. For instance, one can mention that “the
lake is very big” and also “the lake is very small”. This provides us a basis to mine
antonyms by first identifying words that frequently occur in similar contexts, and
then conduct further semantic filtering.

1.8
Mary went to Chigago , and visited John .

ARG0

ARG1

ARG0

ARG1

Similarities: They all have different relationships to different parts of the sentence.
Difference:Dependency tree shows the relationship between each word; Predicate-
argument relations shows the main relationship between predicate and argument

1.9 buy(Tim,book) & price(book,$1)

1.10 Not all of Jason’s classmate like Jason. ∃x( classmate (x,Jason)&(¬ like(x,Jason))
None of Jason’s classmate like Jason.∀x( classmate (x,Jason)&(¬ like(x,Jason))
The scopes of negations are different. In the first sentence, there exist student(s)

that are Jason’s classmate and like(s) him. In the second sentence, such students
do not exist.
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1.11 Anaphora resolution considers the fact that a term (anaphor) refers to a pre-
ceeding term (antecedant) in text. Coreference resolution considers the fact that
multiple terms in a text refer to the same entity. They are related but not the same.
On the one hand, coreference resolution considers all entity mentions in a docu-
ment but anaphora resolution considers individual references. On the other hand,
anaphora resolution typically investigates a wider range of references compared to
coreference solution, including associative anophora or bridging anaphora, where
different terms follow part-whole or other relations beyong identity relation. For
instance, in the sentence “The students went home, the boys running and the girls
walking”, both “the boys” and “it the girls” refer to “the students”.

1.12 named entity recognition; discourse segmentation; machine translation

1.13 POS-tagging; semantic role labelling; relation extraction

1.14 Part-of-speech tagging and dependency parsing can be eprformed jointly.
Compared with a pipelined approach that performs POS-tagging first and then de-
pendency parsing, the joint model has two salient advantages. First, the two tasks
can share mutually beneficial information. Second, error propagation from POS-
tagging to dependency parsing can be avoided.

1.15 Extractive summarization can be relatively more faithful, because the con-
tent is directly taken from the input. However, it can give unnecessary information
because sentences in the document do not always serve as a concise summary. In
addition, coherence between different sentences can be low because they can be
taken from different parts of a discourse. Abstractive summarization can give a
relatively fluent and succinct output thanks to the use of a strong language model.
However, the faithfulness to the original document can be a challenge.

1.16 A personal assistant robot can talk to a user in a daily basis, giving the
user emotional comfort and companion, while helping with online shopping, travel
booking and other daily chores. A research assistant robot can read the litera-
ture and answer questions from a researcher, finding relevant information quickly.
A meeting assistant robot can record the conversation, automatically generating
meeting minutes and answer queries concerning the meeting details. A teaching
assistant robot can record classroom activities and grade homework automatically,
telling the students where to put more effort to.



Chapter 2 Reference Answers

2.1 The outcomes for casting a dice are: {1,2,3,4,5,6}
The parameters for each outcome are: {θ1,θ2,θ3,θ4,θ5,θ6}
There is also a constraint for the parameters: ∑

6
i=1 θi = 1

Assume that ki out of N samples have outcome i in a dataset. Using Maximum
Likelihood Estimation,

logP(D) =
6

∑
i=1

ki logθi

Λ =
6

∑
i=1

ki logθi +λ

(
6

∑
i=1

θi−1

)
(Lagrangian equation)

∂Λ

∂θi
=

ki

θi
+λ = 0⇒ θi =−

ki

λ

6

∑
i=1

θi = 1,λ =−N

It can be derived that θi =
ki
N .

2.2 We take language models for an example. The unigram language model is
parameterised by word probabilities, which we already know how to estimate. For-
mally, a unigram LM consists of only one parameter type, which is the probability
of a word. On the other hand, it contains |V | parameter instances, corresponding to
the probability of each word in a vocabulary V .

2.3 Unigram: Tim
Bigram: Tim bought; bought a; for $1
Trigram:a book for

2.4 (a) P( all |< s >) = 1
3 ,P(a |< s >) = 1

3 ,P( some |< s >) = 1
3

P( models | all ) = 1,P( model | a) = 1,P( models | some ) = 1
P( are | models ) = 1,P( wrong | are ) = 1

2 ,P( useful | are ) = 1
2

13
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P(< /s >| wrong ) = 1,P(< /s >| useful ) = 1

(b) We can assume that all possible bigrams are in the bigram vocabulary be-
fore doing smoothing, adding 1 to the count of each bbigram. Take P(∗|〈s〉) for
example. 10 different words can follow 〈s〉, including〈/s〉), a, all, are, is, model,
models, some, useful and wrong. In the dataset, 〈s〉 all, 〈s〉 a and 〈s〉 some are seen,
with a count of 1 each. Thus after add one smoothing their counts become 2. The
other 7 bigrams were unseen but receive count 1 after smoothing. Thus

P(all|〈s〉) = P(a|〈s〉) = P(some|〈s〉) = 2/13

P(〈/s〉|〈s〉) = .......= 1/13

(c) P( models | all ) = P( model | a) = P( models | some ) = P(< /s >| wrong
) = P(< /s >| useful ) = 1

10
P( all |< s >) = P(a |< s >) = P( some |< s >) = 3

10
P( wrong | are ) = P( useful | are ) = 21

50
P( models | a) = 1

30
When α = 0.05, the results remain the same except: P( model | a) = 1.05

1.1 , P(
models | a) = 0.05

1.1
When α = 0.15, the results remain the same except: P( model | a) = 1.15

1.3 , P(
models | a) = 0.05

1.3

(d) P(< s >) = 3
18 = 1

6 ;P(< /s >) = 3
18 = 1

6
P(a) = 1

18 ;P(all) = 1
18 ;P(models) = 1

18
P(models) = 2

18 = 1
9 ;P(are) = 2

18 = 1
9 ;P(some) = 1

18
P(use f ul) = 1

18 ;P(wrong) = 2
18 = 1

9 ;P(is) = 1
18

P(all|< s >)≈ λ ∗ 1
3 +(1−λ )∗P(all)

When λ = 0.95, P(all|< s >) = 0.95∗ 1
3 +0.05∗ 1

18 = 0.319
When λ = 0.75, P(all|< s >) = 0.75∗ 1

3 +0.25∗ 1
18 = 0.264

2.5 (a)
There are 11 unigrams in Exercise 2.4. < s > and < /s > occur 3 times;

models, are and wrong occur 2 times; a, all, is, model, some and useful occur 1
time. In addition, 〈INK〉 occurs 0 times.

As a result, N3 = 2, N2 = 3, N1 = 6, N0 = 1 and Nr = 0 for r > 3.
(b)

c3 = 4× N4

N3
= 0; c2 = 3

N3

N2
= 2; c1 = 2

N2
N1

= 1; c0 = 1
N1

N0
= 6;

∑
r

cr = 18
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P(w) = 0 for all n-grams that occur 3 times (i.e.,< s > and < /s >).
P(w) = 2/18 for all n-grams that occur 2 times (i.e., models, are and wrong).
P(w) = 1/18 for all n-grams that occur 1 time (i.e., a, all, is, model, some, useful)
P(< unk >) = 6/18
Note that the unknown word receives a relatively high probability because we as-
sumed that there is only one distinct unseen word, which is different from the
realistic scenario discussed in Section 2.2.3.
(c) According to the previous question the probabilities of 〈s〉 and 〈/s〉 are both 0.
We calculate their probabilities in this question without discounting frequencies.
Therefore, the probabilities are calculated using the original counts, equaling 3/18.
(d) In this section, we denote P(Nr) as the probability of words that appears r times
in the corpus.

Thus, the sum of all unigrams is as follows:

∑
r

P(wr)=P(w0)+P(w1)+P(w2)+P(w3)+P(w4)=
6
18

+
1
18

+
2

18
+0+0=

9
18

=
1
2

The normalization process is as follows:

P(wr) =
P(wr)

∑r P(wr)

Thus, the normalized probability is as follows:

P(w0) =
2
3

; P(w1) =
1
9

; P(w2) =
2
9

(e)
We redistribute this total count into unigrams with frequencies 3, 4 and 5, en-

suring that the lower frequency unigrams have higher counts.
In this case, N5 = 0.5,N4 = 0,N3 = 1.5,N2 = 2 and N1 = 6. We can reestimate

N4 using N−5 and N3, where N4 = (N5 +N3)/2 = 1.5. As a result,

c4 = 5
N5

N4
= 10/3; c3 = 4

N4

N3
= 3; c2 = 3

N3

N2
= 3; c1 = 2

N2

N1
= 2/3; c0 = 1

N1

N0
= 6

The total count is = N5× c5 +N4× c4 +N3× c3 + n2× c2 +N1× c1 +N0× c0 =
1×0+0× (10/3)+2×3+2×3+6×2/3+1×6 = 22

P(w) = 3/22 for words occurring 3 times. P(w) = 3/22 for words occurring 2
times. P(w) = (10)/22 = 5/11 for words occurring 1 time. P(unk) = 6/22 = 3/11
for unknown words.

Following question (c), we separately calculate the probability of wrong using
the original counts, which is 6/21 = 2/7.

Thus the probabilities can be normalised as:
P(w) = 3

22 for the words that occurs 5 times; P(w) = 3
22 for words that occur

3 times; P(w) = 3
22 for words that occur 2 times; P(w) = 2

22 = 1
11 for words that

occur 1 time; P(unk) = 3
22 for words not in the vocabulary.
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2.6 (a) For each |u|, a probability mass is δ

∑w #(wu) discounted for each |w| such

that uw ∈ D. Therefore, the total discounted value is 1−∑w PAD (w|u) = δ

∑w #(uw)

| {w : wu ∈ D} | = δ

∑u
| {w : wu ∈ D} |.

In addition,

∑
w

P(w | u) = ∑
w

PAD(w | u)+∑
w

λuPKN(w)

= ∑
w

PAD(w | u)+λu

(
∑
w

P(w) = 1
)

= 1

Thus,

λu =
δ

#u
| {w : uw ∈ D} |

(b)

unigrams bigrams
CKN(〈s〉) = 0 #〈s〉= 3 #(〈s〉 all) = 1 #(〈s〉 all) = 1
CKN(〈/s〉) = 3 #〈/s〉= 3 #(〈s〉 some) = 1
CKN(all) = 1 #〈all〉= 1 #(all models) = 1
CKN(a) = 1 #〈a〉= 1 #(a model) = 1
CKN(are) = 1 #〈are〉= 2 #(are use f ul) = 1
CKN(is) = 1 #〈is〉= 1 #(is wrong) = 1
CKN(model) = 1 #〈model〉= 1 #(model is) = 1
CKN(models) = 2 #〈models〉= 2 #(models are) = 2
CKN(some) = 1 #〈some〉= 1 #(some models) = 1
CKN(use f ul) = 1 #〈use f ul〉= 1 #(use f ul 〈/s〉) = 1
CKN(wrong) = 2 #〈wrong〉= 2 #(wrong 〈/s〉) = 2
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PAD(all | 〈s〉) = 1−0.75
3

=
1

12

PAD(a | 〈s)) =
1−0.75

3
=

1
12

PAD ( some | 〈s〉) = 1−0,75
3

=
1
12

PAD ( models | all ) =
1−0.75

1
=

1
4

PAD ( are | models ) =
2−0.75

2
=

5
8

PAD ( wrong | are ) =
1−0.75

2
=

1
8

PAD (〈/s〉 | wrong) =
2−0.75

2
=

5
8

PAD ( model | a ) =
1−0.75

1
=

1
4

PAD ( is | model ) =
1−0.75

1
=

1
4

PAD ( wrong | is ) =
1−0.75

1
=

1
4

PAD ( models | some ) =
1−0.75

1
=

1
4

PAD ( useful | are ) =
1−0.75

2
=

1
8

PAD (〈/s〉 | use f ul) =
1−0.75

1
=

1
4

(c)
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λ PKN

λ〈/s〉 =
0.75

3 ×0 = 0 PKN(〈/s〉) = 0
λall = 0.75 PKN(all) = 1

14
λa = 0.75 PKN(a) = 1

14
λare = 0.75 PKN(are) = 1

14
λis = 0.75 PKN(is) = 1

14
λmodel = 0.75 PKN(model) = 1

14
λmodels = 0.75

2 ×1 = 3
8 PKN(models) = 1

7
λsome = 0.75 PKN(some) = 1

14
λuse f ul = 0.75 PKN(use f ul) = 1

14
λwrong =

0.75
2 ×1 = 3

8 PKN(wrong) = 1
7

P(all | 〈S〉) = PAD(all | 〈s〉)+λ〈s〉PkN(all) =
1
12

+0.75∗ 1
14

=
23
168

P(a | 〈S〉) = PAD(a | 〈s〉)+λ〈s〉PkN(a) =
1
12

+0.75∗ 1
14

=
23
168

P(some | 〈S〉) = PAD(some | 〈s〉)+λ〈s〉PkN(some) =
1
12

+0.75∗ 1
14

=
23
168

P(models | all) = PAD(models | 〈s〉)+λallPkN(models) =
1
4
+0.75∗ 1

7
=

5
14

P(are | models) = PAD(are | 〈s〉)+λmodelsPkN(are) =
5
8
+

3
8
∗ 1

14
=

73
112

P(wrong | are) =
1
8
+

3
4
∗ 1

7
=

13
56

P(wrong | is) = 1
4
+

3
4
∗ 1

7
=

5
14

P(〈/s〉 | wrong) =
1
8
+

3
4
∗ 1

7
=

5
8

P(models | some) =
1
4
+

3
4
∗ 1

7
=

5
14

P(model | a) = 1
8
+

3
4
∗ 1

7
=

17
56

P(use f ul | are) =
1
4
+

3
4
∗ 1

7
=

5
28

P(is | model) =
1
8
+

3
4
∗ 1

7
=

17
56

P(〈/s〉 | use f ul) =
1
4
+

3
4
∗ 1

7
=

1
4

2.7 (a)True
(b)False
(c)True
(d)False
(e)True

2.8 Parameters can be automatically learned from the data
Hyper-Parameters are the parameters that used to determine the model con-

figuration, like learning rate. They are pre-defined before model training. Different
hyper-parameters usually lead to different models.
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2.9 Hyper-parameters are tuned over (b) development data

2.10 Yes.
The form of Naive Bayes text classifier could be derived as follows:

P(c | d) = P(d | c)P(c)
P(d)

=
P(d | c)P(c)

∑c′∈C P(d | c′)P(c′)

P(d | c) = P(w1w2w1 . . .wn | c) = P(w1 | c)P(w2 | w1,c) . . .P(wn | w1 . . .wn−1,c)

Different from the Naive Bayes text classifier mentioned in Section 2.3.1, we
use the concept of bigram language modelling here instead of assuming all the
words are conditionally independent. This results in the following formula:

P(d | c) = P(w1 | c)P(w2 | w1,c)P(w3 | w2,c) . . .P(wn | wn−1,c)

So the final form of Naive Bayes text classifier is as follows:

P(c | d) ∝ P(d | c)P(c)≈∏P(wi | wi−1,c)P(c)

Given D = {(di,ci)}N
i=1, the probability P(c) is typically not sparse and can be

estimated with MLE as follows:

P(c) =
#c ∈ D

∑c′ (#c′ ∈ D)
=

#c ∈ D
|D|

P(w | c) for each word or n-gram and c pair could also be estimated with MLE
as follows:

P(wi | wi−1,c) =
#(wi−1wi,c) ∈ D

∑w∈V (#(wi−1w,c) ∈ D)

Then, Back-off could be adopted here to reduce sparisity of a bigram w1w2 .
When a bigram is unseen, the probability P(w2 | w1) can be replaced with P(w2).
The new probability is as follows:

Pbackoff (w2w1) = λP(w2 | w1)+(1−λ )λP(w2)

2.11 (a)Bag-of-Bigrams is a subset of bag-of-words
(b)Prefix and suffix are subset of features of full word
(d)The first letter of a word contains two features: 1.whether it is capitalized

2.the letter. So the first feature is overlapped with the latter feature.
(f) word class pairs contains word information
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Chapter 3 Reference Answers

3.1
(a) See Table 1.
v(d1) = 〈0,1,0,0,1,1,1,0,0〉

v(d2) = 〈0,1,0,0,1,1,1,0,0〉
v(d3) = 〈0,1,0,0,1,1,1,0,0〉
(b) Random initialize d1 and d2 as cluster center point c1 and c2.
dist(d3,c1) =

√
12 +12 +12 +12 +12 =

√
5

dist(d3,c2) =
√

12 +12 +12 +12 +12 +12 +12 +12 = 2
√

2
Thus there are two clusters, the first consisting of d1 and d3, and the second con-
sisting of d2. Then, calculate cluster centers:
c1=average(d1,d3)=(0,0, 1

2 , 1
2 ,1,1, 3

2 , 1
2 ,0)

c2=average(d2,d3)=(1,0,0,0,0,0,1,0,1)
The same process repeats.

dist(d1,c1) =

√
12 + 1

2
2
+ 1

2
2
+ 1

2
2
+ 1

2
2
=
√

2

dist(d3,c1) =

√
1
2

2
+ 1

2
2
+ 1

2
2
+ 1

2
2
= 1

dist(d1,c2) =
√

12 +12 +12 +12 +12 =
√

5
dist(d3,c2) =

√
12 +12 +12 +12 +12 +12 +12 +12 = 2

√
2

Thus d1 ∈ cluster1;d2 ∈ cluster2;d3 ∈ cluster1.
The clusters stabilize and the algorithm stops.
(c)See Table 2
Using add-one smoothing.
P(c1 | the dog sat) = P(c1)P(the | c1)P(dog | c1)P(sat | c1) =

1
64

P(c2 | the dog sat) = P(c2)P(the | c2)P(dog | c2)P(sat | c2) =
1

512
P(c1 | the dog sad ) > P(c2 | the dog sad ) Thus "the dog sat" belongs to the first
class
(d)
c1 = animal, c2 = vehicle
Let us define the feature template as
v(d1,c1) =< 0,1,0,0,1,1,1,0,0 0,0,0,0,0,0,0,0,0 >
v(d1,c2) =< 0,0,0,0,0,0,0,0,0, 0,1,0,0,1,1,1,0,0 >
v(d2 c1) = 〈1,0,0,0,0,0,1,0,1 0,0,0,0,0,0,0,0,0 >
v(d2,c2) =< 0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,1,0,1 >
v(d3,c1) =< 0,0,1,1,1,1,2,1,0 0,0,0,0,0,0,0,0,0 >
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documents \ words cat dog car bus ran fast the and sat
d1 0 1 0 0 1 1 1 0 0
d2 1 0 0 0 0 0 1 0 1
d3 0 0 1 1 1 1 2 1 0

Table 1.1: 3.1(a) count-based vectors

words \ classes cat dog car bus ran fast the and sat
c1

1+1
7+1

1
4

1
8

1
8

1
4

1
4

3
8

1
8

1
4

c2
0+1
7+1

1
8

1
4

1
4

1
4

1
4

3
8

1
4

1
8

Table 1.2: 3.1(c) unigram features

v(d3,c2) =< 0,0,0,0,0,0,0,0,0, 0,0,1,1,1,1,2,1,0 >.
v(d4,c1) =< 0,1,0,0,0,0,1,0,1, 0,0,0,0,0,0,0,0,0 >
v(d4,c2) =< 0,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,1,0,1 >

3.2
d\w a ah book bought boy I is know ready saw Tim , .

d1 0.415 0 0.415 2.0 0 0 0 0 0 0 0.415 0 1.0
d2 0.415 0 0.415 0 0 0 2.0 0 1.0 0 0.415 0 0
d3 0 2.0 0 0 0 1.0 0 2.0 0 0 0.415 2.0 1.0
d4 0.83 0 0.415 0 2.0 1.0 0 0 1.0 2.0 0 0 0

2-means:
cluster1 = {d1,d2,d4} , c1 = 〈0.553,0,0.415,0.667,0.667,0.333,0.667,0,0.667,
0.667,0.277,0,0.333〉,
cluster2 = d3,c2 = 〈0,2.0,0,0,0,1.0,0,2.0,0,0,0.415,2.0,1.0〉
dist(d1,c1)< dist(d1,c2), therefore d1 ∈ cluster1
dist(d2,c1)< dist(d2,c2), therefore d2 ∈ cluster1
dist(d4,c1)< dist(d4,c2), therefore d4 ∈ cluster1
dist(d3,c1)< dist(d3,c2), therefore d3 ∈ cluster1
Thus the current clusters are stable.
3-means:
cluster1 = {d1,d2}, therefor c1 = 〈0.415,0,0.415,1.0,0,0,1.0,0,0.5,0,0.415,0,0.5〉
cluster={d1,d2}, therefor c1 = 〈0.415,0,0.415,1.0,0,0,1.0,0,0.5,0,0.415,0,0.5〉
min{dist(d1,c1),dist(d1,c2),dist(d1,c3)}= dist(d1,c1), therefore d1 ∈ cluster1
min{dist(d2,c1),dist(d2,c2),dist(d2,c3)}= dist(d2,c1), therefore d2 ∈ cluster1
min{dist(d3,c1),dist(d3,c2),dist(d3,c3)}= dist(d3,c2), therefore d3 ∈ cluster2
min{dist(d4,c1),dist(d4,c2),dist(d4,c3)}= dist(d4,c3), therefore d4 ∈ cluster3
Thus the current clusters are stable.

3.3 Assuming that the number of features is N and the average number of non-
zero features is M, the hash table complexity is O(M), which is far less than the
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array complexity O(N).

3.4 (a)Theoretically, Naive Bayes takes longer to train because of the need to
compute probability parameters; in contrast, kNN training is trivial, involving the
saving of new training instances into the vector space. For testing, the cost for
Naive Bayes lies mainly on the computing of joint probabilities, while that for kNN
lies mainly on the finding of nearest neighbors in the vector space. Given a large
number of training instances, the latter can be computationally more expensive de-
spite that various algorithms have been developed to optimise this process.(see for
example https://github.com/facebookresearch/DPR)
(b) No, this can be a big advantage.
(c) Yes. For instance, suppose that the closest neighbor of a test instance belongs
to class c1, but the second and third closest neighbors belong to class c2. For k = 1
the output is c1 but for k = 3 the output is c2. In practice, the value of k can be
chosen empirically over a set of development data, or using cross-validation.

3.5 First, you have an affine hyperplane defined by−→w ·−→v +b = 0 and a vectorv0.
Suppose that

−→
Vp is a vector satisfying −→w · −→Vp + b = 0 ( i.e. it is a vector on the

plane).

d =
∥∥∥projw

(
v0−
−→
Vp

)∥∥∥= ∥∥∥∥∥
(

v0−
−→
Vp

)
·w

w·w w

∥∥∥∥∥= ∣∣∣v0 ·w−
−→
Vp ·w

∣∣∣ ‖w‖‖w‖2 =

∣∣∣v0·w−
−→
Vp·w

∣∣∣
‖w‖

Because w · −→Vp = −b (pro jw means the projection of a vector on a plane is its
orthogonal projection on that plane.)

d = ‖projw (v0−V )‖= |v0 ·w+b|
‖w‖

Q.E.D

3.6 (a) | c |+ | w | · | c |+ | bi | · | c | .
(b) The number of c will not change because train set will contain all classes. The
number of wc can reduce much because not all words coexist with all class labels.
The number of bic will drop significantly.
(c) (1) if a feature instance in an unseen test sample is not an element in the fea-
ture vector defined using the training data, the unseen test feature instance will be
ignored. If the missing feature is a crucial feature for deciding the class label, the
model can make a wrong decision.
(d) Negative features can do some extend ameliorate the loss from unseen feature
instances, because (1) they add to the set of model feature instances and (2) they
are features from output samples that the model tends to make.

(e) The feature vector is a large sparse vector with the elements corresponding
to {c= hobby},{w=A,c= hobby},{w= cat,c= hobby},{w= sat,c= hobby},{w=
on,c= hobby},{w= the,c= hobby},{w=mat,c= hobby},{w= .,c= hobby},{bi=
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Acat,c= hobby},{bi= catsat,c= hobby},{bi= saton,c= hobby},{bi= onthe,c=
hobby},{bi = themat,c = hobby} and {bi = mat.,c = hobby} being 1, and the
other elements being 0.

(f) The feature vector is a large sparse vector with the elements correspond-
ing to {c = sports},{w = The,c = sports},{w = cat,c = sports},{w = sat,c =
sports},{w = on,c = sports},{w = the,c = sports},{w = mat,c = sports},{w =
.,c= sports},{bi=The cat,c= sports},{bi= cat sat,c= sports},{bi= sat on,c=
sports},{bi = on the,c = sports},{bi = the mat,c = sports}and{bi = mat .,c =
sports}, of which {w= cat,c= sports},{w= sat,c= sports},{w= on,c= sports},{w=
the,c= sports},{w=mat,c= sports},{w= .,c= sports},{bi= cat sat,c= sports},{bi=
sat on,c = sports},{bi = on the,c = sports},{bi = the mat,c = sports} and {bi =
mat .,c = sports} are likely bad features.

3.7 (a)

P(y | x) = P(y | w,c) ∝ P(y) ·P(w,c | y) = P(y) ·P(w | y) ∏
w′∈c

P(w′ | y)

in which w is the target word and w′ ∈ c is a context word.
(b) The bag of features includes the features in (a) and also collocational features.
The model is not a theoretically correct generative model because there are over-
lapping features.
(c)

|C| · |V | · (2k+1)+ |C|

(d)
|C|(|L|+ |V |) · (2k+1)+ |C|

3.8 (
~w>~v(xi,ci)+bci

)
−
(
~w>~v(xi,c)+bc

)
≥ 2 for all c 6= ci

⇒ ~w>~v(xi,ci)−~w>~v(xi,c)≥ 2+bc−bci , for all c 6= ci

Score margin 2 is set to 1⇒~w= argmin~w 1
2‖w‖

2 , such that ~w>~v(xi,ci)−~wT~v(xi,c)≥
1+bc−bci . If we treat ~w′= ~w

⊕
< 1> and ~v′(xi,ci) = v(xi,ci)

⊕
< bci > where⊕

denotes vector concatenation, then bci corresponds to P(c) in Naive Bayes.



Chapter 4 Reference Answers

4.1 They differ in two main aspects. First, SVM updates only happens in the
condition that:

~θ ·
(
~φ (xi,yi)−~φ (xi,c)

)
< 1

In contrast, Log-linear models update for every batch of data based on the
update rule of SGD according to the value of(

~φ (xi,c)
)
−
(

~φ (xi,yi)
)

Second, the amount of parameter update is fixed for SVM, where only the
gold output and the most violated constraints are used to update model parameters.
In contrast, for log-linear models, every possible output is used to update model
parameters, with the update scaled by a probabilistic factor.

4.2 Compared with log-linear models, the indicator loss leads to more output
classes potentially participating in the parameter update, but still depending on
whether there is a violation (i.e., the incorrect output score is higher than the score
of the correct output). The update rule, on the other hand, is still similar to the
perceptron update in the sense that no probabilistic weights are added to feature
vectors when they are used for updating model parameters.

(a) For multi-class SVM with indicated loss

∂L

∂~θ
=

∂

(
∑

N
i=1 ∑c max

(
0,1−~θ ·~φ (xi,yi)+~θ ·~φ (xi,c)

)
+ 1

2 λ‖~θ‖2
)

∂~θ

=
∂

(
∑

N
i=1 ∑c max

(
0,1−~θ ·~φ (xi,yi)+~θ ·~φ (xi,c)

))
∂~θ

+
∂

(
1
2 λ‖~θ‖2

)
∂~θ

=
N

∑
i=1

∑
c

max
(

0,−~φ (xi,yi)+~φ (xi,c)
)
+λ~θ

(b) See Algorithm 1. For SVM with indicator loss function, the update rule
using SGD training algorithm is shown in Algorithm 1. Compared with log-linear
models, the indicator loss leads to more output classes potentially participating in

25



26

the parameter update, but still depending on whether there is a violation (i.e., the
incorrect output score is higher than the score of the correct output). The update
rule, on the other hand, is still similar to the perceptron update in the sense that no
probabilistic weights are added to feature vectors when they are used for updating
model parameters.

Algorithm 1: SGD Training for multi-class SVM with Indicator Loss

Inputs: D = {(xi,yi)}N
i=1 ,yi ∈C;

Outputs: ~θ ;
Initialisation: ~θ ← 0, t← 0;
while t < T do

for i ∈ [1, ... , N] do
~g← ~θ ;
for c ∈C do

zi← c;
if ~θ · ~φ(xi,yi)−~θ · ~φ(xi,zi)< 1 then

~g←~g−
(

~φ(xi,zi)− ~φ(xi,yi)
)

;
~θ ← ~θ(~g+λ~θ);

t← t +1;

4.3 After adding the L2 regularisation term, the loss function is as follows:

Loss =−∑
i

(
~θ ·ϕ (xi,yi)

)
−∑

i
log

(
∑
c∈C

e~θ ·ϕ(xi,c)

)
+

λ

2
‖~θ‖2

So, the gradient can be written as:

∂ Loss

∂~θ
=−

(
∑

i
~ϕ (xi,yi)−∑

i

∑c∈C e~θ ·ϕ(xi,c) ·~ϕ (xi,c)

∑c∈C e~θ ·ϕ(xi,c)

)
+λ~θ

=−∑
i

∑
c∈C

(~ϕ (xi,yi)−~ϕ (xi,c))P(y = c | xi)+λ~θ

Then, the parameters can be updated as follows:

~g =~g−∑
c∈C

(~ϕ (xi,c)−~ϕ (xi,yi))P(y = c | xi)−λ~θ

4.4 SVM can be almost viewed as a perceptron regularized with L2 regularisation
because SVM optimises the following function:

min
w,b

1
N

N

∑
i=1

max(0,1− yi (w · xi +b))+λ‖w‖2
2
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The optimization problem of standard perception is as follows:

min
w,b

1
n

n

∑
i=1

max(0,−yi (w · xi +b))

After adding L2 regularization to the perception the optimization objective is
as follows:

min
w,b

1
n

n

∑
i=1

max(0,−yi (w · xi +b))+λ‖w‖2
2 ,

which is similar to SVM except for the score margin (0 vs 1).

4.5 (a)local update

~gk←
{

~gk− ~φk(xi,zi)+λ i f θk > 0
~gk− ~φk(xi,zi)−λ i f θk < 0

,

where zi is the highest-scored incorrect output. ~φk is the k-th element in ~φ .

(b)local update

~gk← ~gk +∑
y

P(y | xi)(φ(xi,y)−φ(xi,yi))−λ‖~θ‖

(a) cannot be regarded as SVM, perceptron or log-linear model, (b) can be log-
linear model with lazy update.

4.6 a) The percentage of unbalanced data could be used in this. Assume there
are L data instances in the majority class (+1) and S data instances in the minority
class (-1). Then, the threshold can be set as L

L+S .
Also, we could doing this empirically by calculating different F1 score corre-

sponding to different threshold using development data. Picking the best threshold.
b) In general, we can set C+ and C− for giving the minority class a better

chance. N+ and N− are positive and negative counts, respectively:

C− ·N+ =C+ ·N−

4.7 (a)

Loss =−∑
i

(
~θ ·~ϕ (xi,yi)− log

(
∑
c∈C

e~θ ·φ(xi,c)

))
+λ‖θ‖

∂ Loss

∂~θk
=

{
−∑c∈C (~ϕk (xi,yi)− ~ϕk (xi,c))P(y = c | xi)+λ , if θk ≥ 0
−∑c∈C (~ϕk (xi,yi)− ~ϕk (xi,c))P(y = c | xi)−λ , if θk < 0 ,

where k is the k-th element in ~θ .
(b) See Algorithm 2 for binary classification with L2 regularisation.



28

Algorithm 2: Training for binary classification with L2 regularization

Inputs:D = {(xi,yi)}|Ni=1;
Initialisation:~θ ←~0; α ← α0;~τ ← 0 ; t← 0;
repeat

for i ∈ [1, ... , N] do
P(y =+1 | xi)← e~θ ·~φ(xi)

1+e~θ ·~φ(xi)
;

if yi =+1 then
r← α · (P(y =+1 | xi)−1);

else
r← α ·P(y =+1 | xi);

for k ∈ NonZeroElementIndice(~φ(xi)) do
~θ [i]← ~θ [i]− r · (~φ(xi)[k]);
~θ [i]← ~θ [i]− r×λ ×·(t +1−~τ[i])×θ [i] // regulariser;
~τ[i]← t +1 // last update;

t← t +1
until t = T ;
Outputs:~θ ;

4.8 See Algorithm 3

Algorithm 3: Tri-training

Inputs: D = {(xi,yi)}|Ni=1, U = {x′i}|Mi=1, models A, B and C;
Initialisation: t← 0;
repeat

t← t+1;
TRAIN(A, D);
TRAIN(B, D);
TRAIN(C, D);
for xi′ ∈U do

z′A← PREDICT(A, x′i);
z′B← PREDICT(B, x′i);
z′C← PREDICT(C, x′i);
if z′A = z′B = z′i or z′B = z′C = z′i or z′A = z′C = z′i then

ADD(D, (x′i,z
′
i));

REMOVE(U , (x′i, z′i));
until t = T ;



29

4.9 See Algorithm 4

Algorithm 4: Unified semi-supervised algorithm

Inputs: D = {(xi,yi)}|ND
i=1, U = {x′i}|

NU
i=1, models M = {mi}NM

i=1;
Initialisation: t← 0;
repeat

t← t+1;
for mi ∈M do

TRAIN(mi, D);
for xi′ ∈U do

for mi ∈M do
zmi′

i ← PREDICT(mi, x′i);
if 2≤ NM ≤ 3 and zmi′

i = zm j′
i and CONFIDENT(mi,x′i,z

mi′
i ) and

CONFIDENT(m j,x′i,z
m j′
i ) then

ADD(D, (x′i,z
m j′
i ));

REMOVE(U , (x′i,z
m j′
i ));

else if NM = 1 and CONFIDENT(mi,x′i,z
mi′
i ) then

ADD(D, (x′i,z
m j′
i ));

REMOVE(U , (x′i,z
m j′
i ));

until t = T ;

4.10 Bagging use different subsets of the whole dataset as training data and train
k different models with the same models structure, using the k models to perform
voting.

In contrast, ensemble use the same dataset for the training and use these models
for voting.

They both use voting strategies to leverage different models.
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Chapter 5 Reference Answers

5.1 (a)log2(#w ∈ D) where D is the dictionary
(b)information("the")=information("zoo")
(c) information ( " t* " ) = log2(#w ∈ D)− log2(#”t ∗ ” ∈ D) < information ( " z* "
) = log2(#w ∈ D)
(d) H =−∑w∈D P(w) · log2P(w) = log2(#w ∈ D)
(e) information("the")<information("zoo"), because "the" is more frequent now in
a corpus.

5.2 (a)AC
(b)BDEFGH
(c)ADE
(d)BCFGH
(e)E
(f)G

5.3 The maximum entropy principle leads to the log-linear model. Cross-entropy
and KL-divergence have been used for defining the training objectives. Maximis-
ing the negative log-likelihood function of the model equals minimising the cross-
entropy between model and data distributions. Thus, log-linear models sometimes
can be regarded as maximum entropy models.

5.4 Yes. Given two random variables x for word wi and y for classes overall
mutual information: L(x,y) =∑P(x,y)x,y log2

P(x,y)
P(x)P(y) =Ex,y

(
log2

P(x,y)
P(x)P(y)

)
, where

PMI log2
P(x,y)

P(x)P(y) = log2 P(x,y)− log2 P(x)− log2 P(y). By calculating the ratios
between P(x,y) andP(x) and P(y), we can find whether the word wi is represen-
tative for the class c j. And based on the PMI(x,y) > 0 or PMI(x,y) < 0, we can
find the correlations between these two variables. In log linear models, the out-
put based feature vectors ~φ (x,c j) has feature #(wi,c j). The probability of c j is

P(c j | x) = e
~θ ·~φ(x,c j)

∑c′∈c e
−→
θ ·φ(x,c′)

. The weight in ~θ that corresponds to ~φ(wi,c j) is trained by

MLE.
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5.5

∑
x

∑
y

p(x,y) log2
p(x,y)

p(x)p(y)
≥ 0

P(x)> 0

P(y)> 0

P(x,y)≥ 0
P(x)p(y)
P(x,y)

≤ 1

1− P(x)P(y)
P(x,y)

≥ 0,(
1− P(x)P(y)

P(x,y)

)
· log2 e≥ 0

log2
P(x,y)

P(x)p(y)
≥
(

1− p(x)p(y)
P(x,y)

)
· log2 e≥ 0

log2
P(x,y)

P(x)P(y)
≥ 0

∑
x

∑
y

p(x,y) · log2
P(x,y)

P(x) f (y)
≥ 0

5.6 Distributional word representations make use of words in a context window
for the meaning of a target word. We have learned count-based and PPMI vectors
for words. The key idea is to measure the relative importance of a context word to
a target word. Counts and PPMIs are all statistical measures. t-test can be used to
the same end. Given two words u and v, we can assume that their co-occurrence in
the same context is by chance (null hypothesis). Then we calculate the probability
of the null hypothesis given the co-occurrence statistics of the words in a corpus.
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Algorithm 5: Derive SGD training algorithm for the training objective in
5.7

Inputs: D = {(xi,yi)}|Ni=1, D′ = {x′i}|N′i=1, λ , P(c)(c ∈C);
Initialisation: ~θ ← 0; α ← α0; t← 0;
repeat

for i ∈ [1, ... , N] do
~g← 0;
for c ∈C do

P(c | xi)← e~θ~φ(xi ,c)

∑c′ e
~θ~φ(xi ,c′)

;

~g←~g+(~φ(xi,ci)−~φ(xi,c)) ·P(c | xi);
~θ ← ~θ −α~g;

for i′ ∈ [1, ... , N] do
~g← 0;
for c ∈C do

P(c | x′i′)←
e
~θ~φ(x′

i′ ,c)

∑c′ e
~θ~φ(x′

i′ ,c
′) ;

for c′ ∈C do

P(c′ | x′i′)←
e
~θ~φ(x′

i′ ,c
′)

∑c′′ e
~θ~φ(x′

i′ ,c
′′) ;

~g←~g+(~φ(x′i′ ,c
′
i)−~φ(x′i′ ,c)) ·P(c′ | x′i′) ·

(
λ

P(c)
P(c|x′i′ )

)
;

~θ ← ~θ −α~g;
t = t +1;

until t = T ;
Ouputs:~θ

5.7 (a) The value of the hyper-parameter λ can be determined empirically over a
set of development data.
(b) No – we need to parameterise Q(ci) so that the model parameters can be trained
through the KL regularisation term.
(c) Q(x′j,ci) can be defined as P̃(x′j) = 1/N′, so that Q(ci) is calculated as the math-
ematical expectation of the conditional probability over data. This equation is also
a standard marginalisation equation.
(d)loss is L = ∑

N
i=1 P(ci | xi)−λ ∑c∈C P(c)log2 ∑

N′
i=1 P(c | x′i)

∂L

∂~θ
=−

N

∑
i=1

∂ logP(ci | xi)

∂~θ
−λ ∑

c∈C
P(c) ·

∑
N′
i=1

∂P(c|x′i)
∂~θ

∑
N′
i=1 P(c | x′i)

=−
N

∑
i=1

∂ logP(ci | xi)

∂~θ
−λ

N′

∑
i=1

∑
c∈C

P(c)
P(c | x′i)

· ∂P(c | x′i)
∂~θ
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=−
N

∑
i=1

∑
c∈C

(
P(c | xi)(~φ(xi,ci)−~φ(xi,c))

)
−

N′

∑
i′=1

λP(c)
P(c | x′i)

∑
c′∈C

P(c′ | x′i)(~φ(x′i,ci)−~φ(x′i,c
′))

(e) See Algorithm 5

5.8 The measures are all statistical correlations between words and class labels.
The more correlated words may serve as more indicative features. Their relative
strengths can be discussed according to the way statistical correlations are calcu-
lated, while their effectiveness over a certain dataset can be verified empirically.



Chapter 6 Reference Answers

6.1 Because P(H | o,Θ) is a constant, Θ in this term is fixed to its last value. In
contrast, Θ is adjusted( to maximise Q) in P(o,H |Θ).

6.2 (a) Assign each Vi(i ∈ [1, ..., N]) to cluster i mod k.

hik =
{

1 i f k = (i % k)+1
0 otherwise , where k is the k-th element in ~θ .

(b)

Θ̂ = argmax
Θ

N

∑
i=1

∑
k

P(hi = h | oi,Θ) · logP(oi,h |Θ)

(c) denote P(~vi,hi = k | Θ) = e−‖~vi−~vk‖
2

∑
k
k′=1 e−‖~vi− ~vk′ ‖

2 , Θ = {~ci} |ki=1. E-step define hik =

P(hi = k |~vi,Θ) as e−‖~vi−~vk‖
2

∑
k
k′=1 e−‖~vi− ~vk′ ‖

2 .

Q function is Q(Θ)=∑
N
i=1 ∑

k
k=1 hik ·logP(~vi,hi = k |Θ). M-step Θ̂= argmaxΘ Q(Θ)

6.3 class-2
Iteration-1
we have classes h1 and h2, documents d1, d2, ... , d6 .
Initialise P(h1,Θ) = P(h2,Θ) = 1

2 , P(w | h,Θ) = 1
27 .

Initialise P(wi | hj,Θ) = 1
9

P
(
h | di,Θ

t)= P(di,h |Θt)

∑h∈C P(di,h |Θt)
=

P(h |Θt)∏
|di|
i=1 P(wi | h,Θt)

∑h∈C P(h |Θt)∏
|di|
i=1 P(wi | h,Θt)

P(h1 | d1,Θ) =
1
2×

1
9

4

1
2×

1
9

4
+ 1

2×
1
9

4 =
1
2 ; P(h1 | d2,Θ) =

1
2×

1
9

4

1
2×

1
9

4
+ 1

2×
1
9

4 =
1
2 ;

P(h1 | d3,Θ) =
1
2×

1
9

4

1
2×

1
9

4
+ 1

2×
1
9

4 =
1
2 ; P(h1 | d4,Θ) =

1
2×

1
9

5

1
2×

1
9

5
+ 1

2×
1
9

5 =
1
2 ;

P(h1 | d5,Θ) =
1
2×

1
9

5

1
2×

1
9

5
+ 1

2×
1
9

5 =
1
2 ; P(h1 | d6,Θ) =

1
2×

1
9

5

1
2×

1
9

5
+ 1

2×
1
9

5 =
1
2 ;
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P(h2 | d1,Θ) =
1
2×

1
9

4

1
2×

1
9

4
+ 1

2×
1
9

4 =
1
2 ; P(h2 | d2,Θ) =

1
2×

1
9

4

1
2×

1
9

4
+ 1

2×
1
9

4 =
1
2 ;

P(h2 | d3,Θ) =
1
2×

1
9

4

1
2×

1
9

4
+ 1

2×
1
9

4 =
1
2 ; P(h2 | d4,Θ) =

1
2×

1
9

5

1
2×

1
9

5
+ 1

2×
1
9

5 =
1
2 ;

P(h2 | d5,Θ) =
1
2×

1
9

5

1
2×

1
9

5
+ 1

2×
1
9

5 =
1
2 ; P(h2 | d6,Θ) =

1
2×

1
9

5

1
2×

1
9

5
+ 1

2×
1
9

5 =
1
2 ;

P(w | h,Θ) =
∑

N
i=1 P(h | di,Θ

t)∑
|di|
j=1 δ (w j,w)

λh
=

∑
N
i=1 P(h | di,Θ

t)∑
|di|
j=1 δ (w j,w)

∑
N
i=1 P(h | di,Θt) |di|

P(Apple | h1,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(released | h1,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(Tom | h1,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(bought | h1,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(one | h1,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(. | h1,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(iPod | h1,Θ) =
1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 2

27

P(iPhone | h1,Θ) =
1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 2

27

P(iPad | h1,Θ) =
1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 2

27

P(Apple | h2,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(released | h2,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(Tom | h2,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(bought | h2,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(one | h2,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(. | h2,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(iPod | h2,Θ) =
1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 2

27

P(iPhone | h2,Θ) =
1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 2

27

P(iPad | h2,Θ) =
1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 2

27

Iteration-2

P(h |Θ) =
∑

N
i=1 P(h | di,Θ

t)

N

P(h1 |Θ) =
1
2+

1
2+

1
2+

1
2+

1
2+

1
2

6 = 1
2 ; P(h2 |Θ) =

1
2+

1
2+

1
2+

1
2+

1
2+

1
2

6 = 1
2
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P(h1 | d1,Θ) =
1
2×

1
9

3× 2
27

1
2×

1
9

3× 2
27+

1
2×

1
9

3× 2
27

= 1
2 ; P(h1 | d2,Θ) =

1
2×

1
9

3× 2
27

1
2×

1
9

3× 2
27+

1
2×

1
9

3× 2
27

= 1
2 ;

P(h1 | d3,Θ) =
1
2×

1
9

3× 2
27

1
2×

1
9

3× 2
27+

1
2×

1
9

3× 2
27

= 1
2 ; P(h1 | d4,Θ) =

1
2×

1
9

4× 2
27

1
2×

1
9

4× 2
27+

1
2×

1
9

4× 2
27

= 1
2 ;

P(h1 | d5,Θ) =
1
2×

1
9

4× 2
27

1
2×

1
9

4× 2
27+

1
2×

1
9

4× 2
27

= 1
2 ; P(h1 | d6,Θ) =

1
2×

1
9

4× 2
27

1
2×

1
9

4× 2
27+

1
2×

1
9

4× 2
27

= 1
2 ;

P(h2 | d1,Θ) =
1
2×

1
9

3× 2
27

1
2×

1
9

3× 2
27+

1
2×

1
9

3× 2
27

= 1
2 ; P(h2 | d2,Θ) =

1
2×

1
9

3× 2
27

1
2×

1
9

3× 2
27+

1
2×

1
9

3× 2
27

= 1
2 ;

P(h2 | d3,Θ) =
1
2×

1
9

3× 2
27

1
2×

1
9

3× 2
27+

1
2×

1
9

3× 2
27

= 1
2 ; P(h2 | d4,Θ) =

1
2×

1
9

4× 2
27

1
2×

1
9

4× 2
27+

1
2×

1
9

4× 2
27

= 1
2 ;

P(h2 | d5,Θ) =
1
2×

1
9

4× 2
27

1
2×

1
9

4× 2
27+

1
2×

1
9

4× 2
27

= 1
2 ; P(h2 | d6,Θ) =

1
2×

1
9

4× 2
27

1
2×

1
9

4× 2
27+

1
2×

1
9

4× 2
27

= 1
2 ;

P(w | h,Θ) =
∑

N
i=1 P(h | di,Θ

t)∑
|di|
j=1 δ (w j,w)

λh
=

∑
N
i=1 P(h | di,Θ

t)∑
|di|
j=1 δ (w j,w)

∑
N
i=1 P(h | di,Θt) |di|

P(Apple | h1,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(released | h1,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(Tom | h1,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(bought | h1,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(one | h1,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(. | h1,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(iPod | h1,Θ) =
1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 2

27

P(iPhone | h1,Θ) =
1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 2

27

P(iPad | h1,Θ) =
1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 2

27

P(Apple | h2,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(released | h2,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(Tom | h2,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(bought | h2,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(one | h2,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(. | h2,Θ) =
1
2+

1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 1

9

P(iPod | h2,Θ) =
1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 2

27

P(iPhone | h2,Θ) =
1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 2

27
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P(iPad | h2,Θ) =
1
2+

1
2

1
2×4+ 1

2×4+ 1
2×4+ 1

2×5+ 1
2×5+ 1

2×5
= 2

27

Coverage.
3 classes
Iteration-1
we have classes h1, h2 and h3, documents d1, d2, ... , d6 .
Initialise P(h1,Θ) = P(h2,Θ) = P(h2,Θ) = 1

3 , P(w | h,Θ) = 1
27 .

Initialise P(wi | hj,Θ) = 1
9

P
(
h | di,Θ

t)= P(di,h |Θt)

∑h∈C P(di,h |Θt)
=

P(h |Θt)∏
|di|
i=1 P(wi | h,Θt)

∑h∈C P(h |Θt)∏
|di|
i=1 P(wi | h,Θt)

P(h1 | d1,Θ) =
1
3×

1
9

4

1
3×

1
9

4
+ 1

3×
1
9

4
+ 1

3×
1
9

4 =
1
3 ; P(h1 | d2,Θ) =

1
3×

1
9

4

1
3×

1
9

4
+ 1

3×
1
9

4
+ 1

3×
1
9

4 =
1
3 ;

P(h1 | d3,Θ) =
1
3×

1
9

4

1
3×

1
9

4
+ 1

3×
1
9

4
+ 1

3×
1
9

4 =
1
3 ; P(h1 | d4,Θ) =

1
3×

1
9

5

1
3×

1
9

5
+ 1

3×
1
9

5
+ 1

3×
1
9

5 =
1
3 ;

P(h1 | d5,Θ) =
1
3×

1
9

5

1
3×

1
9

5
+ 1

3×
1
9

5
+ 1

3×
1
9

5 =
1
3 ; P(h1 | d6,Θ) =

1
3×

1
9

5

1
3×

1
9

5
+ 1

3×
1
9

5
+ 1

3×
1
9

5 =
1
3 ;

P(h2 | d1,Θ) =
1
3×

1
9

4

1
3×

1
9

4
+ 1

3×
1
9

4
+ 1

3×
1
9

4 =
1
3 ; P(h2 | d2,Θ) =

1
3×

1
9

4

1
3×

1
9

4
+ 1

3×
1
9

4
+ 1

3×
1
9

4 =
1
3 ;

P(h2 | d3,Θ) =
1
3×

1
9

4

1
3×

1
9

4
+ 1

3×
1
9

4
+ 1

3×
1
9

4 =
1
3 ; P(h2 | d4,Θ) =

1
3×

1
9

5

1
3×

1
9

5
+ 1

3×
1
9

5
+ 1

3×
1
9

5 =
1
3 ;

P(h2 | d5,Θ) =
1
3×

1
9

5

1
3×

1
9

5
+ 1

3×
1
9

5
+ 1

3×
1
9

5 =
1
3 ; P(h2 | d6,Θ) =

1
3×

1
9

5

1
3×

1
9

5
+ 1

3×
1
9

5
+ 1

3×
1
9

5 =
1
3 ;

P(h3 | d1,Θ) =
1
3×

1
9

4

1
3×

1
9

4
+ 1

3×
1
9

4
+ 1

3×
1
9

4 =
1
3 ; P(h3 | d2,Θ) =

1
3×

1
9

4

1
3×

1
9

4
+ 1

3×
1
9

4
+ 1

3×
1
9

4 =
1
3 ;

P(h3 | d3,Θ) =
1
3×

1
9

4

1
3×

1
9

4
+ 1

3×
1
9

4
+ 1

3×
1
9

4 =
1
3 ; P(h3 | d4,Θ) =

1
3×

1
9

5

1
3×

1
9

5
+ 1

3×
1
9

5
+ 1

3×
1
9

5 =
1
3 ;

P(h3 | d5,Θ) =
1
3×

1
9

5

1
3×

1
9

5
+ 1

3×
1
9

5
+ 1

3×
1
9

5 =
1
3 ; P(h3 | d6,Θ) =

1
3×

1
9

5

1
3×

1
9

5
+ 1

3×
1
9

5
+ 1

3×
1
9

5 =
1
3 ;

P(Apple | h1,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(released | h1,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(Tom | h1,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(bought | h1,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(one | h1,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(. | h1,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(iPod | h1,Θ) =
1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 2

27

P(iPhone | h1,Θ) =
1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 2

27

P(iPad | h1,Θ) =
1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 2

27
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P(Apple | h2,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(released | h2,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(Tom | h2,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(bought | h2,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(one | h2,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(. | h2,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(iPod | h2,Θ) =
1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 2

27

P(iPhone | h2,Θ) =
1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 2

27

P(iPad | h2,Θ) =
1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 2

27

P(Apple | h3,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(released | h3,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(Tom | h3,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(bought | h3,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(one | h3,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(. | h3,Θ) =
1
3+

1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 1

9

P(iPod | h3,Θ) =
1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 2

27

P(iPhone | h3,Θ) =
1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 2

27

P(iPad | h3,Θ) =
1
3+

1
3

1
3×4+ 1

3×4+ 1
3×4+ 1

3×5+ 1
3×5+ 1

3×5
= 2

27

Iteration-2
Repeat, coverage.
When the initialization parameters are equal, both 2-class and 3-class converge
after two iterations.

6.4 (a)We can follow the EM algorithm and derive the training process for semi-
supervised Naive Bayes. The idea is similar to Eq 6.14. In particular, the labeled
data instances can be directly used for MLE optimization, while the unlabeled in-
stances can contribute to the overall training loss function through a Q function.
The derivation can be
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Q(Θ,λ ) =
N

∑
i=1

logP(di,ci |Θ)+
N+M

∑
j=N+1

∑
c∈C

P
(
di,Θ

t) logP(di,c |Θ)

∧(Θ,λ ) = Q
(
Θ,Θt)−λ0

(
∑
c∈C

P(c |Θ)−1)−∑
c∈C

λc

(
∑

ω∈V
P(ω | c,Θ

)
−1

)

=
N

∑
i=1

logP(di,ci |Θ)+
N+M

∑
j=N+1

∑
c∈C

P
(
c | di,Θ

t)(logP(di,c | θ))

−λ0

(
∑
c∈C

P(c |Θ)−1

)
−∑

c∈C
λc

(
∑

w∈V
P(ω | c,Θ)

)
−1

=
N

∑
i=1

(
logP(ci |Θ)+

|di|

∑
j=1

logP(ω i
j | ci,Θ)

)

+
N+M

∑
i=N+1

∑
c∈C

P
(
c | di,Θ

t)(logP(c |Θ)+
|di|

∑
j=1

logP
(
ω

i
j | c,Θ

))

−λ0

(
∑
c∈C

P(c |Θ)−1

)
−∑

c∈C
λc

(
∑
ω

P(ω | c,Θ)−1
)

∂ ∧ (θ ,λ )
∂P(c |Θ)

=
∑

N
i=1 δ (ci,c)
P(c |Θ)

+
N+M

∑
i=N+1

P(c | di,Θ
t)

P(c |Θ)
−λ0

=
∑

N
i=1 δ (ci,c)+∑

N+M
i=N+1 P(c | di,Θ

t)

P(c |Θ)
−λ0

Letting
∂ ∧ (Θ,λ )

∂P(c |Θ)
= 0,P(c |Θ) =

∑
N
i=1 δ (ci,c)+∑

N+M
i=N+1 P(c | di,Θ

t)

λ0

Under the constraints that ∑
c∈C

P(c | θ) = 1

∑
c∈C

∑
N
i=1 δ (ci,c)+∑

N+M
i=N+1 P(c | di,Θ

t)

λ0
=

N +M
λ0

= 1

λ = N +M

Thus P(c |Θ) =
∑

N
i=1 δ (ci,c)+∑

N+M
i=N+1 P(c | di,Θ

t)

N +M

As can be seen from the equation above, the value of the model parameter
P(c|Θ) is a combination of the objective in Eq 6.11 and the objective in Eq 6.14.
For labeled training instances, we take a hard count 1 for its gold-standard class;
for unlabeled data instances, we use Θt to estimate the count. The total count is the
total number of data instances, N +M.
The above equation can be inserted back to Algorithm 6.2. Note that we can also
use the labeled instances to initialize values of Θ before EM training. The other
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parameter type P(w|c,Θ) can be derived similarly.
(b) The value of λ here controls the contribution of the unlabeled instances. Fol-
lowing the derivation of (a), the parameter estimation for (c) is

∑
N
i=1 δ (ci,c)+∑

N+M
i=N+1 λP(c | di,Θ

t)

N +M

This regularisation term is different from L2 norm in that it makes use of a set of
unlabeled data for better estimating parameters.

6.5 IBM model 1 source code: https://github.com/shawa/IBM-Model-1. You can
change the data to different language.

6.6 proof by induction
(1) |x|= 1 ∑

|Y |
a1=0 ∏

1
i=1 P(xi | yai) = ∑

|Y|
ai=0 P(x1 | ya1) = ∏

1
i=1 ∑

|Y |
j=0 P(xi | y j)

(2)

if
|Y |

∑
a1=0

|Y |

∑
a2=0

...
|Y |

∑
ak=0

k

∏
i=1

P(xi | yai) =
k

∏
i=1

|Y|

∑
j=0

P(xi | y j)

then
|Y |

∑
a1=0

|Y |

∑
a2=0

...
|Y |

∑
ak=0

k+1

∏
i=1

P(xi | yai)

=
|Y |

∑
a1=0

|Y |

∑
a2=0

...
|Y |

∑
ak=0

k

∏
i=1

P(xi | yai) ·P(xk+1 | yak+1)

=
|Y |

∑
ak+1=0

(
|Y |

∑
a1=0

|Y |

∑
a2=0

...
|Y |

∑
ak=0

P(xi | yai) ·P(xk+1 | yak+1)

)

=
|Y |

∑
ak+1=0

(
k

∏
i=1

|Y |

∑
j=0

P(xi | yi)

)
·P(xk+1 | yai)

=

(
k

∏
i=1

|Y |

∑
j=0

P(xi | yi)

)
·

(
|Y |

∑
ak+1=0

·P(xk+1 | yak+1)

)

=
k

∏
i=1

|Y |

∑
j=0

P(xk+1 | yak+1)

6.7 By induction
(a)

∑
A

1

∏
i=1

P(xi | yi)

∑
|Y |
j=0 P(xi | y j)

·
1

∑
k=1

δ (x,xk)δ (y,yak)
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=
|Y |

∑
a1=0

P(x1 | ya1)

∑
|Y |
j=0 P(x1 | y j)

·δ (x,x1) ·δ (y,ya1)

=
|X |

∑
i=1

|Y |

∑
ai=0

P(xi | yai)

∑
|Y |
j=0 P(xi | y j)

·δ (x,xi) ·δ (y,yai)

=
P(x | y)

∑
|Y |
j=0 p(x | y j)

|X |

∑
i=1

δ (x,xi) ·
|Y |

∑
j=0

δ (y,y j)

(b)

If∑
A

k

∏
i=1

P(xi | yai)

∑
|Y |
j=0 P(xi,y j)

·
k

∑
k=1

δ (x,xk) ·δ (y,yak)

∑
A

k+1

∏
i=1

P(xi | yai)

∑
|Y |
j=0 P(xi,y j)

·
k

∑
k=1

δ (x,xk+1) ·δ (y,yak)

=
|Y |

∑
ak+1=0

 |Y |

∑
a1=0

|Y |

∑
a2=0

...
|Y |

∑
ak=0

k

∏
i=1

P(xi | yai)

∑
|Y |
j=0 P(xi | yi)

 · P
(
xk+1 | yak+1

)
∑
|Y |
j=0 P(xk+1 | y j)

·

(
k

∑
k=1

δ (x,xk) ·δ (y,yak)

)
·δ (x,xk+1) ·δ

(
y,yak+1

)
=

|Y |

∑
ak+1=0

 P(x | y)

∑
|Y |
j=0 P(x | yi)

·
k

∑
k=1

δ (x,xk+1)
|Y |

∑
j=0

δ (y,y j)


·

P
(
xk+1 | yak+1

)
∑
|Y |
j=0 P(xk+1 | y j)

·δ (x,xk+1) ·δ
(
y,yak+1

)
=

P(x | y)

∑
|Y |
j=0 P(x | yi)

·
k

∑
k=1

δ (x,xk+1)
|Y |

∑
j=0

δ (y,y j) ·
|Y |

∑
ak+1=0

P
(
xk+1 | yak+1

)
∑
|Y |
j=0 P(xk+1 | y j)

·δ (x,xk+1) ·δ
(
y,yak+1

)
=

P(x | y)

∑
|Y |
j=0 P(x | yi)

·
k+1

∑
k=1

δ (x,xk)
|Y |

∑
j=0

δ (y,y j)

6.8

d\w WorldCup host Russia bid economy recover continue boost growing oil dependence
d1 1 1 1 0 0 0 0 0 0 0 0
d2 1 1 0 0 1 0 0 1 0 0 0
d3 1 1 0 1 0 0 0 0 0 0 0
d4 0 1 0 0 1 0 0 1 0 0 0
d5 0 1 0 0 1 1 1 0 0 0 0
d6 0 1 0 0 0 0 0 0 0 1 1

Table 1.3: Table of documents for latent topic analysis
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See Algorithm 6

6.9 Similarities. Both are iterative algorithms over unlabeled data.

Differences. (1) Hard EM is more general in that it deals with hidden variables.
Self-training can be viewed as leveraging unlabeled data by making the output la-
bels hidden variables. However, the hidden variables are constrained to the unseen
outputs only.

(2) EM is fully unsupervised but self-training is semi-supervised. EM can be
made more similar to self-training by adding labeled data also, as for Exercise 6.4.

(3) Hard EM is a probabilistic model that iteratively estimates hidden variables
and model parameters by maximizing the joint data likelihood. In contrast, self-
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training is not necessarily a probabilistic model trained using MLE.

Algorithm 6: PLSA in 6.8

Inputs: h ∈ [1,2],d ∈ [1, ... ,6],w ∈ [1, ... ,11], Phd, Pwh;
Initialisation: h ∈ [1,2],d ∈ [1, ... ,6],w ∈ [1, ... ,11],total− c←
20 ,c[1][1] = 1, c[2][1] = 1, c[3][1] = 1,
c[1][2] = 1, c[2][2] = 1, c[5][2] = 1,
c[1][3] = 1, c[2][3] = 1, c[4][3] = 1,
c[2][4] = 1, c[5][4] = 1, c[9][4] = 1, c[10][4] = 1,
c[2][5] = 1, c[5][5] = 1, c[6][5] = 1, c[7][5] = 1,
c[2][6] = 1, c[10][6] = 1, c[11][6] = 1, Phd, Pwh, Phdw according to 1.3 ;
repeat

total−Phdw = 0;
for h ∈ [1,2] do

for d ∈ [1, ...,6] do
for w ∈ [1, ...,11] do

Phdw[h][d][w] = Phd[h][d]×Pwh[w][h];
total−Phdw+= Phdw[h][d][w];

total− c− phdw = 0;
for h ∈ [1,2] do

for d ∈ [1, ...,6] do
for w ∈ [1, ...,11] do

Phdw[h][d][w]/= total− phdw;
total− c−Phdw+= (c[w][d]×Phdw[h][d][w]);

for h ∈ [1,2] do
for d ∈ [1, ...,6] do

Phd[h][d] = 0;
for w ∈ [1, ...,11] do

Phdw[h][d]+ = (c[w][d]×Phdw[h][d][w]);
for h ∈ [1,2] do

for d ∈ [1, ...,6] do
Phd[h][d]/= total− c;

for w ∈ [1, ...,11] do
for h ∈ [1,2] do

P[w][h] = 0;
for d ∈ [1, ...,6] do

P[w][h]+ = (c[w][d]×Phdw[h][d][w]);
P[w][h]/= total− c− phdw

print: ”phd\n”;
for h ∈ [1,2] do

for d ∈ [1, ...,6] do
printPhd[h][d];

print\n;
print: ”phd\n”;
for w ∈ [1, ...,11] do

for h ∈ [1,2] do
printP[w][h];

print\n;
until coverage;



Chapter 7 Reference Answers

7.1 (a) Parameter type are P(ti) and P(w j, ti). Parameter instances are P(ti = t),
P(wi−2 | ti = t), P(wi−1 | ti = t), P(wi | ti = t), P(wi+1 | ti = t), and P(wi+2 | ti = t).

(b) Yes, There are six parameter types, which are class label and five words
given class label and different positions. And parameter instances are P(ti = t),
P(w j | ti = t, j = i− 2), P(w j | ti = t, j = i− 1), P(w j | ti = t, j = i), P(w j | ti =
t, j = i+ 1), and P(w j | ti = t, j = i+ 2).Therefore, the size of model is same as
model in (a).

(c)Feature templates are t, and wt p, in which t is POS-tag, w is word, and p is
position index. ~v(w, t, p) =< t1, t2, ..., t|L|,w1t1 pi−2, ...,w|V |t|L|pi+2 >. We can add
addtional feature such as wilder threshold window of words and bigram condition
of POS-tag.

7.2 If T1:i−1 (ti−1 = t̂i−1) is not the highest-scored. Assume that T1:i−1
(
ti−1 = t̂ ′i−1

)
is the highest-scored, in which t̂ ′i−1 6= t̂i−1. Because the last tag is t̂i. Therefore, we
get the highest-scored sequence T1:i

(
ti−1 = t̂ ′i−1, ti = t̂i

)
. However, the last two tags

of the highest-scored sequence T̂1:i is t̂i−1 and t̂i, which contracts to the assumption.
Therefore, t̂ ′i−1 = t̂i−1.

7.3 Assume that T1:i−1
(
ti−2ti−1 = t̂ ′i−2t̂ ′i−1

)
of T̂1:i is the highest-scored sequence

and t̂ ′i−2t̂ ′i−1 6= t̂i−2t̂i−1. Because the last tag is t̂i. Therefore, we get the highest-
scored sequence T1:i

(
ti−2ti−1 = t̂ ′i−2t̂ ′i−1, ti = t̂i

)
. However, the last three tags of the

highest-scored sequence T̂1:i is t̂i−2, t̂i−1 and t̂i, which contracts to the assumption.
Therefore, t̂ ′i−2t̂ ′i−1 = t̂i−2t̂i−1.

7.4

45
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i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
< B >< B > 1
< B > l1 0.3
< B > l2 0.04
< B > l3 0.16

l1l1 0.012 0.00032 0.0000192 0.000006144 0.000003888
l1l2 0.003 0.00192 0.0001152 0.000003072 0.0000015552
l1l3 0.012 0.00096 0.0000576 0.000004608 0.0000082944
l2l1 0.0048 0.00064 0.000012 0.00002592 0.000005832
l2l2 0.0016 0.0024 0.001296 0.00023328 0.0000419904
l2l3 0.0012 0.00056 0.000012 0.00000648 0.0000093312
l3l1 0.016 0.00096 0.0000768 0.000018432 0.00000162
l3l2 0.016 0.00072 0.000576 0.000001536 0.0000003888
l3l3 0.004 0.00012 0.0000096 0.0000007680 0.00000103680

7.5

7.6 execute program.

7.7 The first-order HMM in conditioned by previous one POS-tag, while second-
order HMM consider previous two POS-tag. The oth HMM model is P(T1:n |
W1:n) =

P(W1:n|T1:n)P(T1:n)
P(W1:n)

, in which P(W1:n | T1:n) equals to ∑
n
1 P(Wi | Ti) and P(T1:n)

equals to ∑
n
1 P(ti). Compared oth HMM model with first-order and second-order

HMMs, it is a greedy search, which only considers current step value. In addition,
it predicts each POS-tag given an single word. Therefore, oth HMM model might
have lower performance than others, which have more parameter instances.



Chapter 8 Reference Answers

8.1 See Algorithm 7

Algorithm 7: Viterbi decoding for second-order MEMM in 8.1
Inputs: s =W1:n, second-order POS tagging model with feature vector
~φ(ti, ti−1, ti−2,W1:n), and feature weight vector ~θ ;
Variables:tb, bp;
Initialization:tb[t ′][t][i]←−∞; bp[t ′][t][i]← NULL for t, t ′ ∈ L∪{〈B〉},
i ∈ [0, ...,n], tb[〈B〉][〈B〉][0]← 0;
for t ∈ L do

tb[〈B〉][t][1]← tb[〈B〉][〈B〉][0]+~θ ·~φ(t,〈B〉,〈B〉,W1:n);
y1← argmax〈B〉t tb[〈B〉][t][1];
for t ∈ L do

for t ′ ∈ L do
score← ~θ ·~φ(t, t ′,〈B〉,W1:n);
if tb[t ′][t][2]< tb[〈B〉][t ′][1]+ score then

tb[t ′][t][2]← tb[〈B〉][t ′][1]+ score;
bp[t ′][t][2]← 〈B〉t ′;

for i ∈ [2, . . . ,n] do
for t ∈ L do

for t ′ ∈ L do
for t ′′ ∈ L do

score← ~θ ·~φ(t, t ′, t ′′,W1:n);
if tb[t ′][t][i]< tb[t ′′][t ′][i−1]+ score then

tb[t ′][t][i]← tb[t ′′][t ′][i−1]+ score;
bp[t ′][t][i]← t ′′t ′;

yn← argmaxt ′t tb[t ′][t][n];
for i ∈ [n, . . . ,3] do

yi−1← bp[yi][n];
Outputs:y1, ...,yn

8.2 (a)(b)(e)(f)

8.3 (a) No. The feature should be φ(ti, ti−1,wi−2,wi−1,wi,wi+1,wi+2).
(b) Because the target is to score the probability of ti.
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(c) No. All wi is known condition.
(d) Yes. Optimal sub-problem will be affected, which leads to the final result of
dynamic programming change.
(e) No. The feature instances is unchangeable. Therefore, the value of i will not
affect feature instances.
(f) Yes. The decoding process uses dynamic programming to decrease the com-
plexity of calculation.
(g) See Algorithm 8

Algorithm 8: First-order Forward-Backward Algorithm in 8.3
Inputs: s =W1:n, first-order CRF model for POS tagging with feature
vector ~φ(ti, ti−1,W1:n), and feature weight vector ~θ ;
Variables:pt, α , β ;
pt← 0;
α ← FORWARD (W1:n,model);
β ← BACKWARD (W1:n,model);
for i ∈ [1, . . . ,n] do

Z← 0;
for Ti ∈ [T1, ...,Tn] do

Z← Z +Ti

for t ∈ L do
pt[i]← α[t][i]×β [t][i]

Z ;
Outputs:pt

8.4 See Algorithm 9 for Forward Algorithm for Second-order CRF.

Algorithm 9: Forward Algorithm for Second-order CRF in 8.4
Inputs: s =W1:n, second-order CRF model for POS tagging with feature
vector ~φ(ti, ti−1, ti−2,W1:n), and feature weight vector ~θ ;
Variables:α;
Initialization:α[0][〈B〉][〈B〉]← 1;α;
for i ∈ [1, . . . ,n] do

Z← 0;
for Ti ∈ [T1, ...,Tn] do

Z← Z +Ti

for t ∈ L do
pt[i]← α[t][i]×β [t][i]

Z ;
Outputs:pt

8.5 The features for POS tagging in Table 8.1 are useful for SRL, because POS
is of great importance to SRL. Other features are also useful, such as position
index, voice, idoim type, hypotaxis and the first and last words of an argument.
The verb phrase in syntax tree can be used for SRL. All the features above will
affect decoding efficiency, because they are calculated during decoding by dynamic
programming.
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Task Generative Model Discriminative Model
Classification (d) Log-linear model Perception SVM (b) (c)

Sequence labelling (e) Logistic regression (a)

Table 1.4: 8.7 Correlation between different models

8.6 Discriminative model such as CRF have the advantage of enabling rich fea-
tures, as compared with HMM. In other word, word segmentation needs rich fea-
tures to solve the problem. However, the insufficient features of HMM limits the
accuracy. In addition, inconsistency between local training and global testing can
cause accuracy loss.

8.7 See Table 1.4

8.8 CRFs’ output scores are based on probability, while structured perceptrons
don’t output probability. The training speed of perceptron is fast than CRF be-
cause it doesn’t have forward-backward process. They have same decoding speed
because they both calculate the product of ~θ and ~φ . Two method also have equal
freedom in defining rich feature because they both use dynamic programming to
calculate marginal probability.
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Chapter 9 Reference Answers

9.1 First, we should calculate the marginal probability of w j ... Wk. Then we
take first-order CRF as an example to derive the marginal probability.

P(t j...tk = B−PER...E−PER |W1:n)

= ∑
t1∈L
· · · ∑

t j−1∈Ltk+1∈L
· · ·∑

tn∈L

1
Z

n

∏
i=1

exp
(
~θ ·~φ (ti, ti−1,W1:n)

)
,

where t j...tk = B−PER...E−PER

=
1
Z

(
∑

t1∈L
· · · ∑

t j−1∈L

j

∏
i=1

exp
(
~θ ·~φ (ti, ti−1,W1:n)

))
·(

∑
ti+1∈L

· · ·∑
tn∈L

n

∏
i=k

exp
(
~θ ·~φ (ti, ti−1,W1:n)

))
,

where t j...tk = B−PER...E−PER

According to Equation 8.11 and Equation 8.12 in Chapter 8, we can also get

α( j, t) = ∑
t ′∈L

(
α
(

j−1, t ′
)
· exp

(
~θ ·~φ

(
t j = B−PER, t j−1 = t ′,W1:n

)))
β (k, t) = ∑

t ′∈L

(
β
(
k+1, t ′

)
· exp

(
~θ ·~φ

(
tk+1 = t ′, tk = E−PER,W1:n

)))
Finally, we can calculate the probability according to Algorithm 8.4 in Chapter 8.

9.2 (a) ~φ(w1,w2) = ~φ(”take”,”thedaybe f oreyesterday”)
~φ(w2,w3) = ~φ(”thedaybe f oreyesterday”,”rain”)
~φ(w3,w4) = ~φ(”rain”,” f orexample”)
(b) word w j, word bigramw j−1w j, whether w j is a single-character word, SINGLE(w j),
cb( j)ce( j)

9.3 Besides the POS-tagging feature can be add to syntactic chunking and NER,
previous chunking label can add to feature templates because it can prevent model
prediction obvious wrong labels. The main differences between word segmentation
and the other two tasks is that syntactic chunking and NER have category labels.
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As for the similarity, they all have to segment words. Compared with Table 9.2,
Table 9.3 focus on relation between word and POS-tagging. Compared with Table
Table 9.2, Table 9.4 uses more features to represent words such as prefix and word
shape.

9.4 (a) (b) The three for-loop of Algorithm will be changed. e ∈ [2,n] keeps

Algorithm 10: Recover the word sequence from the table bp
Inputs: bp,last word’s index b and e from the highest-scored table[b,e],
Sequence C1:n = c1c2...cn;
Initialisation: Segmented sequence W ← NULL ;
for b 6= 0 do

W.append(Cb,e);
b′← bp[b,e];
e← b;
b← b′−1;

Outputs: REVERSE(W1:|W |);

unchanged. b turns to b ∈ [max(2,e−M− 1),e] and b′ turns to b′ ∈ [max(1,b−
M),b−1]. The asymptotic complexity of new algorithm is O(M2n)
(c) Yes. decoding algorithm will add one more for-loop to record the third word.

9.5 (a) HSMM and HMM have similar training and decoding process. However,
the emission probability of HSMM are composed of several emission probabilities
of generating each character given ti.

9.6 (a) 0th order semi-CRF only considers one output segment. Therefore, the
decoding process becomes a greedy search decoding.
(b) Since there is no dependency between two nearby output segments, the process
of calculating marginal probabilities of segments become a independent process.
So that it is a simple classification process given the current subsequence of char-
acters.
(c) As for large-margin models, it becomes to the same as perceptron.
(d) See Algorithm 11 for decoding.



53

Algorithm 11: Dynamic programming decoder for sequence segmenta-
tion in 9.6

Inputs: Sequence C1:n = c1c2...cn, and model parameters ~θ ;
Variables:tb, bp;
Initialization:
for e ∈ [1, ...,n] do

table[e]←−∞;
bp[e]←−1;
table[e]← ~θ · ~φc(C1:n,0,e, l(0,e));

Algorithm:
for e ∈ [2, ...,n] do

for e′ ∈ [2, ...,e] do
if table[e′]+~θ · ~φc(C1:n,e′,e, l(e′,e))> table[e] then

table[e]← table[e′]+~θ · ~φc(C1:n,e′,e, l(e′,e));
bp[e]← e′;

max_score← table[n]; W1:|W |← back trace with bp;
Outputs:Segmented sequenceW1:|W | = w1w2...w|W |;

(e) See Algorithm 12 for decoding.

Algorithm 12: Dynamic programming decoder for sequence segmenta-
tion with label in 9.6

Inputs: Sequence C1:n = c1c2...cn, and model parameters ~θ ;
Variables:tb, bp;
Initialization:
for e ∈ [1, ...,n] do

table[e]←−∞;
bp[e]← 0;
table[e]← ~θ · ~φc(C1:n, l(0,0),0,e, l(0,e));

Algorithm:
for e ∈ [2, ...,n] do

for e′ ∈ [1, ...,e−1] do
for b ∈ [1, ...,e′−1] do

if table[e′]+~θ · ~φc(C1:n, l(b,e′−1),e′,e, l(e′,e))> table[e]
then

table[e]← table[e′]+~θ · ~φc(C1:n, l(b,e′−1),e′,e, l(e′,e));
bp[e]← e′;

max_score← table[n]; W1:|W |← back trace with bp;
Outputs:Segmented sequenceW1:|W | = w1w2...w|W |;

9.7 For Algorithm 9.1, Algorithm 9.2, Algorithm 9.3, and Algorithm 9.4, two
for-loop should add to take labels of two output segments, in which l, l′ ∈ L.
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9.8 ~θ ← ~θ +~φ(pos)−~φ(neg) performs early update. Fourth line from last re-
turn; ensures that the algorithm does not proceed with the current training instance
after the update is executed. ~θ←~θ +~φ (G1:n)−~φ( Top-k ( agenda, 1)[0]) performs
the final update as in the standard structured perceptron. In the early update the lo-
cal features range from step one to step i, while final update the ~φ∆ (W1:n,T1:i−1, t)
ranges from one to n.

9.9 According to Equation 8.23, we add ∆
(
Ŵ ′i ,Wi

)
to Equation 9.15 1

2‖~θ‖
2 +

C
(

∑
N
i=1 max

(
0,1−~θ ·~φ (Wi)+maxW ′ 6=Wi

(
~θ ·~φ (W ′)

)))
, then we get 1

2‖~θ‖
2 +

C
(

∑
N
i=1 max

(
0,∆

(
Ŵ ′i ,Wi

)
−~θ ·~φ (Wi)+

(
~θ ·~φ

(
Ŵ ′i
))))

, where Ŵ ′i = maxW ′ 6=Wi(
∆(W ′,Wi)+~θ ·~φ (W ′)

)
. In particular,∆

(
Ŵ ′i ,Wi

)
=∑

n
i=1 δ (w′i,wi). Therefore, we

get cost-augmented decoding that is same as Equation 8.24.



Chapter 10 Reference Answers

10.1 (a) NP: boy; V P: likes
(b)
(c)

10.2 Total number of possible Binary Search Trees with n different keys (countBST (n))
= Catalan number Cn = (2n)!

(n+1)!∗n! For n = 0,1,2,3, . . . values of Catalan num-
bers are 1,1,2,5,14,42,132,429,1430,4862, . . . . So are numbers of Binary Search
Trees. Total number of possible Binary Trees with n different keys (countBT (n))=
countBST (n)∗n!

10.3 Assume that score(T̂ (i, i+s−1,c)) of T̂1:i is the highest-scored tree where ĵ
makes it equal to

(
score(T̂ (i, j−1,c1))+ score(T̂ ( j, i+ s−1,c2))+ logP(c⇒ c1c2)

)
.

If max
c1,c2∈C, j∈[i+1,...,i+s−1]

(
score(T̂ (i, i+ s−1,c))+ score(T̂ (i, i+ s−1,c))+ logP(c⇒ c1c2)

)
is the highest score when j′ 6= ĵ. Then we have score(T ′i, i+s−1,c))> score(T̂ (i, i+
s−1,c)), which contracts to the assumption. Therefore, j′ = ĵ and score(T̂ (i, i+
s−1,c)) of T̂1:i is the highest-scored tree.
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10.4 See Algorithm 13 for algorithm FINDDERIVATION for CKY.

Algorithm 13: FINDDERIVATION for CKY when given the pointer bp in
10.4

Inputs: bp, bp[s][i][c];
Variables: j, c1, c2;
Initialization:
for e ∈ [1, ...,n] do

table[e]←−∞;
bp[e]← 0;
table[e]← ~θ · ~φc(C1:n, l(0,0),0,e, l(0,e));

Algorithm:
j,c1,c2 = FINDDERIVATION(bp[s][i][c]);
if j−1 = 1 then

SETLEFTNODE(wi,c1,c);
else

FINDDERIVATION(bp[ j−1][i][c1]);
if s− j+1 = 1 then

SETRIGHTNODE(w j,c2,c);
else

FINDDERIVATION(bp[s− j+1][ j][c2]);
Outputs:Tree root node c;

10.5 For unary rule, We can update the score of chart cell. The loop rule might
lead to infinite loop.

10.6 Equation 10.6 separately calculates the total probability of outside(i, j,c),
while Algorithm 10.3 calculates two segment at each step. The ranges of s, i, j, c1,
c2 and c are the same.
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10.7 See Algorithm 14 for CKY algorithm.

Algorithm 14: CKY algorithm in 10.7
Inputs: W1:n = w1w2...wn, PCFGmodelP(c→ c1c2), P(c→ w);
Variables:chart, bp;
Initialization:
for i ∈ [1, ...,n] do

for c ∈C do
chart[1][i][1][c]← logP(c→ wi);

for s ∈ [2, ...,n] do
for i ∈ [1, ...,n− s+1] do

for c ∈C do
for m ∈ [1, ..,k] do
chart[s][i][m][c]←−∞;
bp[s][i][c]← -1;

Algorithm:
for s ∈ [2, ...,n] do

for i ∈ [1, ...,n− s+1] do
for m ∈ [1, ..,k] do

for m′ ∈ [1, ..,k] do
for c,c1,c2 ∈C do

score← chart[ j−1][i][m][c1]+ chart[s− j+
1][ j][m′][c2]+ logP(c→ c1c2);

if TOPK(chart[s][i][m][c])> score then
else

s, i, m, c =MIN(chart[s][i][m][c]);
chart[s][i][m][c]← score;
bp[s][i][c]← ( j,c1,c2);

Outputs:FINDDERVATION(bp[n][1][TOPK(chart[n][1][m][c])]);

10.8 Local rules and Non-local rules can be treated differently to get better per-
formance. Local features such as V P→ V BDNPPP is useful. Non-local patterns
such as ParentRule and NGramTree. For example, < V P→ V BDNPPP|S > and
<V P(V BDsaw)(NP(DTthe))>.

10.9

10.10

10.11 We can use beam search to save k highest score each step, then we get k-
best output. However, because best step might lost during beam search the k-best
output candidates are not the k highest-scored outputs.
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10.12 Hidden variables H is POS sequence corresponding to word sequence.The
observed variables O the sequence of words.



Chapter 11 Reference Answers

11.1 Compared with features F1 in Table 9.5, features F2 in Table 11.2 are more
non-local. We can see the definition of features F2 are not restricted by dynamic
programming so that it has large span, which doesn’t limit to two step. Besides, F1
and F2 both have unigram and bigram features.

11.2 SEE BOOK NOTE

11.3 Similar to the actions of transition-based word segmentation in Table 11.1,
the state transition system for joint word segmentation and POS-tagging just needs
to adopt SEP to SEP-P, which assign POS-tag of each word when separating.

11.4 I have found the slides. Typing...

11.5 Draft P.53

11.6 Difference bewteen Table 11.6? (Transition-based Dependency Parsing with
Rich Non-local Features)

11.7 Dependency parsing only has a set of n−1 dependency arcs between words,
while constituent parsing doesn’t have such restriction. As a result, constituent
parsing just combine previous nodes into one node rather than poping words out,
leading to more complex phrase structure hierarchies.

11.8 For character-based Chinese parsing, part-of-speech information can be lever-
aged to segmentation of words, which considers internal structures of words that
have syntactic relations when forming Chinese words.
HOW CAN TRANSTITION SYSTEM BE EXTENDED TO...

11.9 We design model that modifies arc-standard model with annotated intra-
word dependencies and real inter-word dependencies.The annotated intra-word de-
pendencies refer to the dependencies extracted from annotated word structures,
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Figure 1.1: Caption
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Figure 1.2: 10.7 constituent tree

Figure 1.3: 10.8 Joint feature template
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while the pseudo intra-word dependencies used in the above models are similar
to those of Hatori’s work (Incremental joint approach to word segmentation, pos
tagging, and dependency parsing in chinese).

11.10 We design some actions of system, which is character-level system that has
state stack, words buffer and input character set: (a) SHIFT-NER, which removes
the front character from input set, assigning the NER label NER to the character
and pushing it onto the buffer. (b) SEP-S, which removes the all characters from
buffer, assigning the sentiment label S to character span and pushing it onto the
stack.

11.11 - S-SHIFT, which copies 3 an item from the front of B and pushes it on S.
- S-REDUCE pops an item from S.
- S-RIGHT (`) creates a syntactic dependency. Let u be the element at the top of
S and v be the element at the front of B. The new dependency has u as head, v as
dependent, and label `. u is popped off S, and the resulting structure, rooted at u, is
pushed on S. Finally, v is copied to the top of S.
- S-LEFT (`) creates a syntactic dependency with label ` in the reverse direction
as S-RIGHT. The top of S,u, is popped. The front of B,v, is replaced by the new
structure, rooted at v.
- M-SHIFT removes an item from the front of B and pushes it on M.
- M-REDUCE pops an item from M.
- M-RIGHT (r) creates a semantic dependency. Let u be the element at the top of
M and v, the front of B. The new dependency has u as head, v as dependent, and
label r.u is popped off M, and the resulting structure, rooted at u, is pushed on M.
- M-LEFT (r) creates a semantic dependency with label r in the reverse direction
as MRIGHT. The buffer front, v, is replaced by the new v-rooted structure. M
remains unchanged.
- M-SWAP swaps the top two items on M, to allow for crossing semantic arcs.
- M-PRED(p) marks the item at the front of B as a semantic predicate with the
sense p, and replaces it with the disambiguated predicate.
- M-SELF (r) adds a dependency, with label r between the item at the front of B
and itself. The result replaces the item at the front of B.

11.12 A state can be (α,β ,A), where α represents a stack of words being pro-
cessed with mention labels, β represents a buffer of next incoming words and A
represents the set of relations between words. The set of transition actions include:
- SHIFT, which removes the front word from the buffer, pushing it onto the stack,
and assigning mention labels;
- POP, which removes the front word from the buffer, which is not a mention;
- RELATION-X, which constructs a relation with label X between the top two
mentions on the stack;
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- SWAP, which removes the second top word from the stack, putting it back to the
buffer front.

11.13 As long as least one gold-standard sequence is in the beam, we don’t up-
date the parameters.
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Chapter 12 Reference Answers

12.1
P(x1,x2,x3) = P(x1)P(x3 | x1)P(x2 | x1,x3)

P(x1,x2,x3)

P(x1)
= P(x2,x3 | x1)

We know x2 ⊥ x3 | x1

P(x2,x3 | x1) = P(x2 | x1)P(x3 | x1)

Therefore, P(x2 | x1,x3) = P(x2 | x1)

12.2

12.3 (a) Yes, because they are parent of x5.
(b) x4 and x5.
(c) Seven parameters are needed.
(d)

P(x1,x2,x3,x4,x5) = P(x1)P(x2)P(x3 | x1,x2)P(x4 | x2)P(x5 | x3,x4)

= 0.5×0.5×0.9×0.8×0.06

= 0.0108

(e) We keep other varible and only consider x2 and x5
(f)

12.4

12.5 Yes. We can use MAP and Gipps sampling to choose the model parameters.

12.6 It is a multinomial distribution so that we add Dirichlet prior. Naive Bayes
calculates result of dividing the number of a parameter by the total number of
parameters, which is same as the formation of add-alpha smooth.

12.7
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Figure 1.4: relation sequence of 12.8

12.8
tiΛP(ti|ti−1)P(ti+1|ti)P(wi|ti)

When sampling we only have to consider the Markov blanket of a variable.



Chapter 13 Reference Answers

13.1
sigmoid =

1
1+ e−x = σ(x)

σ(x) =
1

(1+ e−x)′

=
−1xe−x

(1+ e−x)2

=
1+ e−x−1

(1+ e−x)2

σ(x) =
1

(1+ e−x)

(
1+ e−x−1

1+ e−x

)
=

1
(1+ e−x)

(
1− 1

1(+e−x

)
= σ(x)(1−σ(x))

σ(x)′′ = (σ(x)(1−σ(x)))′

= (σ(x)−σ(x))′ = σ(x)′−2σ(x) ·σ(x)′

= σ(x)(1−σ(x)−2σ(x)(σ(x)(1−σ(x))

= σ(x)(1−σ(x))(1−2σ(x))

σ(x) = σ (x0)+σ
′(x0)(x−x0)+

σ ′′(x0)

2!
(x− x0)

2 +O(x)

= σ (x0)+σ (x0)(1−σ (x0))(x− x0)+
σ (x0)(1−σ (x0))(1−2σ (x0)

2!
(x− x0)

2

Therefore, it achieves pair-wise and triple-wise combinations of automatic features.
However, single-layer can not combine input vector’s multi-dimension.

13.2
swish(x) = x · sigmoid(βx)

∂ swish(x)
∂x

=
∂ (x · sigmoid(βx))

∂x
= σ(βx) ·+x ·σ ′(βx)

= σ(βx)+ x ·β ·σ(βx)(1−σ(βx))

= σ(βx)(1+βx(1−σ(βx)))

67



68

(b) The gradients of ReLU, LeakyReLU and ELU is fixed when its value greater
than 0. When its value less or equal to 0, the gradients of RelU and LeakyReLU
are fixed while ELU’s is αex.

13.3
y1 = σ

(
wy

11x1 +wy
12x2

)
y2 = σ

(
wy

21x1 +wy
12x2

)
o = σ (u1y1 +u2y2)

∂L
∂y1

=−u1(1−o)

∂L
∂y2

=−u2(1−o)

∂L
∂x1

=−(1−0)
(
u1wy

11σ(wy
11x1 +wy

12x2)
(
1−σ (w11x1 +w12x2)+u2w21σ

(
w2y1 +wy

22x2
)
(1−σ

(
wy

21x2 +wy
22x2

)))

∂L
∂x2

=−(1−0)
(
u1wy

12σ(wy
11x1 +wy

12x2)
(
1−σ (w11x1 +w12x2)+u2w22σ

(
w2y1 +wy

22x2
)
(1−σ

(
wy

21x2 +wy
22x2

)))
∂L
∂u1

=−y1(1−o)+2λu1 (1.1)

∂L
∂u2

=−y2(1−o)+2λu2 (1.2)

∂L
∂

y
w11

=−u1σ
(
ω

y
11x1 +ω

y
12x2

)
x1(1−o)+2λwy

11 (1.3)

∂L
∂

y
w12

=−u1σ
(
ω

y
11x1 +ω

y
12x2

)
x2(1−o)+2λwy

12 (1.4)

∂L
∂

y
w21

=−u2σ
(
ω

y
21x1 +ω

y
22x2

)
x1(1−o)+2λwy

21 (1.5)

∂L
∂

y
w22

=−u2σ
(
ω

y
21x1 +ω

y
22x2

)
x2(1−o)+2λwy

22 (1.6)
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13.4 (1)

∂L(~xi,ci,θ)

∂~u
=

(
∂ 〈(~xi,ciiθ)

∂~u1
,
∂L(x̄,ci,θ)

∂u2

)
=

(
∂L(−→x1 ,Ci,θ)

γ0

∂0

∂~u1
,
∂L(~xi,ci,θ)

∂0

∂0

∂ ~u2

)
=

∂L
∂0
·
〈

∂0

∂~u1
· ∂0

∂
−→u2

)
|

=
∂L
∂0

 ∂ (u1,u2)
> (y1,y2〉

)
∂u1

,
∂

(
〈u1,u2)

> (y,y2)
)

∂u2


=

∂L
∂o

(y1 ·o(1−o),y2 ·o · (1−o)〉

=
∂L
∂o
·o(1−o)~y

(2)
∂L0

∂~wy =
∂L0

∂~y
· ∂~y

∂~wy

=
∂L◦

∂~y
·

(
∂~y

∂wy
11

, ∂~y
∂wy

12
∂~y

∂w21y ,
∂y

∂wy
22

)

=
∂L◦

∂~y
·
(

2x1wy
11x1, 2x1wy

12x1
2x2wy

21x2, 2x2wy
22x2

)
=

∂L
∂y

θ (2 ·~wy ·~x)x>

13.5
∂L◦

∂~wy =
∂L◦

∂~y
∂y

∂~wy

=

(
− log0

∂y1
,
− log0

∂y2

)
⊗
(

2x1wy
11x1 2x2wy

12x2
2x1wy

21x1, 2x2ω2yx2

)
=−(1−0)⊗

(
2x1w11

yx1· ,2x2w12
yx2

2x1w21
yx1, ,2x2w22

yx2

)
Thus, it is equivalent to Eq.13.10

13.6

Because ∆Wi j×
∂o

∂w[i][ j]
is the approximation of the change, in which ∆Wi j is smaller.

13.7 We assum that we take the derivative with respect to x.
∂ ty
∂x = wy ∂y

∂x =
∂y
∂ ty
· ∂ ty

∂x = 2ty ·ωy ∂ t0
∂x = ∂ t0

∂y ·
∂y
∂x = 2ty ·ωy ·~u

The advantage is it can use chain rule of derivatives.
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13.8 H1:n−k+1 = P(CNN(x1 : N,k,d0)
If using max pooling, the gradient at maximum is ∂H

∂x , others are 0.
If using average pooling, the gradient is 1

n
∂H
∂x

13.9
∂H1:n−k+1

∂xi

=
hign

∑
i=low

wi

low =
{

i− k+1 i− k+1≥ 1
1 else

high =
{

i+ k−1 if i+ k−1≤ n− k+1
n+ k−1 else

13.10

For L =−
n

∑
i=1

log~P

Every value can be non-zero.

For L =
N

∑
i=1

max
(

0,−Pi +max
c 6=i

pi

)
, only the maximum is not zero.

13.11 (a) assume that filter size is k, then the padding size is k-1
(b) n-gram model
(c) add a pooling layer on it

13.12 H has definite meaning when it is in PLSA

13.13 (1) Take a batch to calculate mean and variance
(2)

x ∈ Rm×p×q

γ ∈ Rm

β ∈ Rm

BN = γ
x−E(x)

V (x)
+β

13.14
∂v
∂ z

=
∂ (z−u)

σ
α +β

= α ·

(
− 1√

2α

b2 −
α

d −u · i√
2α

α2

)



Chapter 14 Reference Answers

14.1 Suppose that we know ∂L
∂yt

, ∂L
∂ct+1

, ∂L
∂ot+1

, ∂L
∂ ft+1

, ∂L
∂ it+1

, ∂L
∂gt+1

. To find the gradient
of a node, first find the output node of the node, then calculate the gradient of all
output nodes times the gradient of the output node to the node, and finally add them
together to get the gradient of the node. We get

∂L
∂ht

=W T
yh ·

∂L
∂yt

+W T
oh ·

∂L
∂ot+1

+W T
f h ·

∂L
∂ ft+1

+W T
ih ·

∂L
∂ it+1

+W T
gh ·

∂L
∂gt+1

Compare to the gradient of RNN, there is no factor of the form ((W h)T )t in the
gradient calculation of LSTM, which leads to vanishing gradients. In addition,
ft , it , ot and ct are learned by model itself, which means neural network learns
to change the gated values to determine when to forget the gradient and when to
retain it.

14.2 According to the equation 14.10, we can define bi-directional GRUs(BiGRU).
Formally,

−→
H =

−−→
GRU(X) =

[−→
h 1;
−→
h 2; . . . ;

−→
h n

]
←−
H =

←−−
GRU(X) =

[←−
h 1;
←−
h 2; . . . ;

←−
h n

]
BiGRU(X) =

−→
H ⊕←−H =

[−→
h 1⊕

←−
h 1;
−→
h 2⊕

←−
h 2; . . . ;

−→
h n⊕

←−
h n

]
Then we can stack multiple layer BiGRU as stacked GRUs. Formally,

−→
H 0 = X,

←−
H 0 = X

−→
H 1 =

−−→
GRU1

(−→
H 0
)
,
−→
H 2 =

−−→
GRU2

(−→
H 1
)
, . . . ,
−→
H l =

−−→
GRUl

(−→
H l−1

)
←−
H 1 =

←−−
GRU1

(←−
H 0
)
,
←−
H 2 =

←−→
GRU2

(←−
H 1
)
, . . . ,
←−
H l =

←−→
GRUl

(←−
H l−1

)
H =
−→
Hl⊕

←−
Hl =

[−→
h l

1⊕
←−
h l

1;
−→
h l

2⊕
←−
h l

2; . . . ;
−→
h l

n⊕
←−
h l

n

]
.

14.3 First of all, the former method only concatenate forward and backward fea-
tures at the last layer, which ignore the interaction of them. Although the latter
method can make forward and backward features interact more fully, the differ-
ence between features is less obvious than the first method.
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14.4 (a) Define documents as D = d1,d2, ...,DnD , sentences of each document di

in D as Si = si,1,si,2, ...,si,nSi
and tokens in each sentences as Xi, j,k = xi, j,1,xi, j,2,xi, j,ni, j .

We separate hierarchical LSTMs into token-level and sentence-level LSTM. For-
mally, for sentence si, j of document di at token-level

htoken
1 ,ctoken

1 = LSTM- STEP
(

x1,htoken
0 ,ctoken

0

)
htoken

2 ,ctoken
2 = LSTM−STEP

(
x2,htoken

1 ,ctoken
1

)
htoken

ni, j
,ctoken

ni, j
= LSTM−STEP

(
xni, j ,h

token
ni, j−1,c

token
ni, j−1

)
We choose the last token’s hidden state as the sentence representation. Similar to
token-level LSTM, at sentence-level

hsent
1 ,csent

1 = LSTM- STEP
(
x1,hsent

0 ,csent
0
)

hsent
2 ,csent

2 = LSTM−STEP
(
x2,hsent

1 ,csent
1
)

hsent
nSi

,csent
nSi

= LSTM−STEP
(

xnSi
,hsent

nSi−1,c
sent
nSi−1

)
Then the last hidden state of sentence-level LSTM can be the representation of
document.
(b) Similar to using the attention mechanism on LSTM, we can use different kinds
of attention mechanism on token-level and sentence-level LSTM layer separately.

14.5 Let y = HIGHWAY(x)

∂L
∂bT =

∂L
∂y
⊗ (g− x)⊗

∂σ
(
W T x+bT

)
∂ (wT x+bT )

· xT

∂L
∂bH =

∂L
∂y
⊗ t⊗

∂σ
(
W Hx+bH

)
∂ (wHx+bH)

· xT

∂L
∂bT =

∂L
∂y
⊗ (g− x)⊗

∂σ
(
W T x+bT

)
∂ (wT x+bT )

∂L
∂bH =

∂L
∂y
⊗ t⊗

∂σ
(
W Hx+bH

)
∂ (wHx+bH)

∂L
∂x

=
(
wT )T ·

(
(g− x)⊗

∂σ
(
W T x+bT

)
∂wT x+bT

)
⊕
(
wH)T ·

(
t⊗

∂σ
(
wHx+bH

)
∂wH +bH

)
⊕ (1− t)

They both carry information from the input to the output directly. However ResNets
don’t have the extra parameters compared with highway and it tries to create the
ideal mapping by using x directly while highway uses a ’gate’ mechanism.

14.6 Empirical results have led many to believe that noise added to recurrent lay-
ers (connections between RNN units) will be amplified for long sequences, and
drown the signal. However, variational dropout in the word-based model corre-
sponds then to randomly dropping word types in the sentence, and might be inter-
preted as forcing the model not to rely on single words for its task.
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14.7 Let xt as input.

Q = LayerNorm
(

WQxt;ααα1,βββ 1

)
K = LayerNorm

(
WKxt;ααα2,βββ 2

)
V = LayerNorm

(
WVxt;ααα3,βββ 3

)
H = attention(Q,K,V)

14.8 dot-product attention

∂ score (q,h)
∂q

= h

∂ score (q,h)
∂h

= q

scaled dot-product attention

∂ score (q,h)
∂q

=
h√
d

∂ score (q,h)
∂h

=
q√
d

general attention

∂ score (q,h)
∂q

=Wh

∂ score (q,h)
∂h

=W T q

∂ score (q,h)
∂W

= qh

additive attention

∂ score(q,h)
∂ν

= tanh(W (q⊕h)+b)

∂ score (q,h)
∂b

= v⊗
(
1− tanh(w(q⊕h)+b)2)

∂ score (q,h)
∂W

= (q⊕h)T ·
(
v⊗
(
1− tanh(w(q⊕h)+b)2))

∂ score (q,h)
∂W

=W T ·
(
v⊗
(
1− tanh(w(q⊕h)+b)2))

14.9 We can use three dimension matrix W ′, then si = qW ′hi, which has interac-
tion between each element in vector q and hi.
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14.10 (a)First, we can hard code leaf node by c = h = emb(x). We can also treat
leaf node as branch node.

h1,c1 = LSTM(x1,h0,c0)

h0, c0 are the initial state and cell vectors, which are model parameters.
(b) Dependency tree is a structure that contain the dependent relation between each
word. Child-sum tree LSTM is a model that can be used to represent arbitrary tree,
not only dependency tree. The most suitable value for each node to input is the
representation of word corresponding to each node.
(c) For unary-branching nodes, we don’t change the expression of original binary
tree LSTM. Let the only node to be the left node and assign zero values to right
node.
(d) Similar to the solution of (c), we creat a N-ary tree LSTM, in which vectors of
non-existent nodes are made~0
(e) For each nodes, we only consider its incoming edge and calculate them as
same as child-tree LSTM. Because DAG has no circle in graph, we can sequential
calculate the values of the nodes and use the values of the child nodes to compute
the values of the parent nodes.

14.11 (a) Sure. Replace LSTM by GRU to generate representation of words and
remain the other part of GCN model unchanged.
(b) Sure. In the process of operation, node information and edge information are
equally considered.
(c) Multi-layer SANs are GATs that each node is connect to other nodes. Multi-
layer CNNs have different kernel size in each layer, therefore, we can treat nodes
in threshold as neighbor nodes of the node generated by pooling. (d) Add the node
itself to the calculation of attention mechanism, and weighted sum neighbour nodes
and itself when calculating its hidden state.
(e) At sentence-level, we treat each sentence as a node and define the causal logic,
emotion causal and topic similarity between sentences as an edge. For each word in
the sentence, we make each word as a node and use word categories, entity labels,
referential relationships, and entity relationships as the definition of edges.

14.12 Different kinds of Tree-LSTM can represent constituent trees and depen-
dency trees. For AMR graphs, we can use GNN to generate the representation
of them. In order to get a representation that jointly learns all the structure and
the original sequence, pooling layer is a good choice. Tree structure depends on
original sequence . Empirically, the latter one is better.

14.13 In terms of complexity, AdaMax can be simpler than Adam due to without
tracking the quadratic history gradients. In addition, AdaMax does not need to
consider the bias correction term. For optimisation effectiveness, AdaMax can
sometimes be more effective than Adam for certain applications. But it is difficult
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to theoretically compare which one is more effective. In practice, the computation
overload of quadratic history gradients can be neglected, and Adam is a much more
popular choice than AdaMax.
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Chapter 15 Reference Answers

15.1 They differ on output layer. A CRF layer is used to replace a local softmax
output layer. Because a CRF output layer captures Markov dependencies between
consecutive labels in a sequence, it out-performs a local classification output layer.
However, taking dependencies between consecutive labels into consideration cor-
responds to cost more computation resource.

15.2 The above function can’t interact element of hi and h j, while biaffine model
the interaction between the corresponding elements of hi and h j. Also, we can
calculate score by si, j = v1

ThT
i Wh j + hT

i Uh j + v2
T (hi⊕h j), where W is three-

dimensional matrix. The advantage is each element of hi and h j can interact with
each other. The disadvantage is more computing resources are required.

15.3 The most useful algorithm is Chu-Liu-Edmond algorithm. The runtime of
Prim algorithm and Kruskal algorithm are O(n logn+m logn) and the Chu-Liu-
Edmond algorithm’s is O(n logn+m), where m is the number of edges and n is
the number of nodes. The choice of decoding algorithm affect the training of the
parser because different algorithm will lead to different maximum spanning tree.

15.4 Yes, we should adapt word representation into span representation, and we
get a sequence of pan-level hidden state. Then the task can be defined as finding
the most likely span si for each span s j in the span sequence. The POS tag and
dependency syntax are useful for relation extraction. We can use graph neural
network to integrate dependency syntax as input feature in the task, where span is
node and dependency syntax is edge.

15.5

15.6

15.7 Model 2 is missing arc label feature. I think arc label feature and coreference
feature can be added to model 2. Take arc label feature for an example, it can be
served as edge in GNN to let two words interact with each other.
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Figure 1.5: Back-propagation of question 15.8

15.8 h integrates hidden representation hi3 , hi2 , hi1 and h j1 for representing s. i1,
i2, i3 and j1 are static. Model 2 use three independent feature to represent stack
information and BiLSTM makes each hidden state contain sentence information.

15.9 There are t2+1 parameter instances in b. We can extend parameter instances
of b to |D|(t2 +1), where D is the word number of dictionary.

15.10 Finish with Ch8

15.11

∂L(Wi,Ti,Θ)

∂b(`,`′)
=−

|Wi|

∑
j=1

(
hi

jδ
(
t i

j = `, t i
j−1 = `′

)
−ET ′∼P(T ′|Wi)h

i
jδ
(
t i

j = `, t i
j−1 = `′

))

15.12

∂L
∂~γ(r)

=−

(
∑
r∈Ti

~τ(r)W f T − ∑
r′∈GeNR(Wi)

P
(
r′ |Wi

)
~τ(r′)W f T

)

=−

(
∑
r∈Ti

~τ(r)W f T −Er′∼P(r′|Wi)
~τ(r′)W f T

)
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15.13

∂ pi
arc

∂h j
=

∂ pi
arc

∂oi
arc ·

∂oi
arc

∂h j

= [diag(pi
arc)− parc

i · parc
i ]vector(δ (si, j = si, j′))

(
U>hi +ν

)
,where δ (si, j = si, j′) returns 1 if si, j = si, j′ is true and 0 otherwise.

∂ pi
arc

∂hi
=

∂ pi
arc

∂oi
arc ·

∂oi
arc

∂hi

= [diag(pi
arc)− parc

i · parc
i ]vector(δ (si, j = si. j′))(Uh j +ν)

15.14 The original vector was A, and then it was A′. So if you use concatenation,
then your fully connected network can be represented as a block matrix [B,C],
resulting in BA+CA′; If you add, then your fully connected network can be rep-
resented as a matrix D, resulting in D(A+A′). As can be seen from the above
formula, the concatenation operation must be able to represent what the addition
operation can represent. As long as the neural network learns B =C = D, the con-
catenation operation can get the same result as the addition operation. Conversely,
this conclusion is not true. It can work just because the difference between the two
embedding is small, they can be mapped into one space.

15.15 We can add up all the word embedding in the span as span representation.
In addition, pooling function and attention functions are also available. Empiri-
cally, attention functions can give the similar performance because it consider the
information between each word in span. Named entity recognition, relation extrac-
tion, coreference resolution and event extraction can benefit from span representa-
tion.

15.16
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Chapter 16 Reference Answers

16.1

λ = σ

(
Wλhhdec

i−1 +Wλyemb′ (yi−1)+bλ

)
P(yi | X1:n,Y1:i−1) =

score g(yi = vi)+ score c(yi = uk)

∑v∈V score g(v)+∑u∈U scorec(u)
,vi ∈Vanduk ∈U

, where vi denotes the ith vocabulary word in V and uk denotes the kth vocabulary
word in U .

16.2 It will be very useful in semantic analysis, because under different context
the same sentence has different meaning. Conditional encoding can use attention
at every encode step by calculating the context vector and adding is as part of input.

16.3 Yes, multi-layer enables more complex representation of our time-series
data, capturing information at different scales and adds levels of abstraction of
input observations over time. Each hi of BiLSTM depends on hi−1. In contrast, for
SAN, the attention function for each hi is independent, which allows strong paral-
lelisation in computation. Therefore, multi-layer BiLSTM will cost more time.

16.4 (a)Yes, We can view target labels as a sequence of label that need to be
predicted by sequence-to-sequence model. The advantage is each label is predicted
given the previous T1:i−1 and word sequence W1:n which is a global answer. The
disadvantage is sequence-to-sequence model have to predict all the label given the
last hidden state of encoder, which may lost some important information when the
sequence of label is long.
(b)Yes. They both fuse many information into a vector to predict structure. Models
in Chapter 15 only use some of certain position hidden state to predict and don’t use
the fusion vector as the input of next step prediction, while sequence-to-sequence
model fuses all the sequence information to predict answer and at each step the
previous output is used as input.

16.5 (a)The model can not remember long term utterances, thus lose much infor-
mation. Yes, chitchat and task-oriented dialogue don’t require model to use much
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history information, which may lead to some noise.
(b)Stacked LSTM and BERT. The former one first get sentence-level representa-
tion then fuse history dialogue. we can concatenate dialogue history into a long
string and use BERT to get the representation of dialogue history.
(c)Similar to the formal attention mechanism conduct on context words, we view
knowledge as context words. Each entity and relation in knowledge base has its
own representation. Then we can get the attention distribution and context vectot
over knowledge to generat the next word.
(d)Yes. We can view each mi in memory network as context word representation
and use attention mechanism on it. The advantage of doing this is adding extra
information that related to the query can improve the performance.

16.6 A sequence-to-sequence neural network encodes the source sentence and
generates the target nodes and edges with decoder. This model predicts each node
or edge given the previous prediction and source sentence information, which is a
greedy local predition. Compared with a greedy local structure, its prediction is
generated under more information. Compared with a transaction-based model, it
without global normalisation and don’t need to define features.

16.7 We define cross entropy as the training objective funtion.

∂L
∂h1 = (Pmatch(h1,h2)− y)

h1

|h1||h2|
∂L
∂h2 = (Pmatch(h1,h2)− y)

h2

|h1||h2|

16.8 Average of hidden states contains more complete information of source sen-
tence, therefore, this kind of representation is more precise. We can average repre-
sentation and use this representation to calculate attention distribution on hi, which
can be used to weigh sum the hi. The advantage of the aggregation layer is that it
contains more important information closed to the whole sentence.

16.9 Co-attention matching used one scoring matrix X for calculating both α1
and α2, which makes the attention scores in both direction closely coupled.

16.10 This method contains different level information, which includes words
level, weighted sum of h2

j and the weighted sum of most important words in H i

with respect to the other h j. This makes the representation are contains more in-
formation.

16.11 Bilinear attention has interaction between corresponding element between
hi

1 and h j
2. Dot-product attention doesn’t need extra parameters. Additive atten-

tion adds non-linear function, which can model more complex relationship.
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16.12
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Chapter 17 Reference Answers

17.1 Yes. RNNs can be used for n-gram neural language modelling(describe the
reason). (using the character of recurrent neural language model to answer)

17.2 hierarchical softmax discussed in Section 17.1.3

17.3 The parent node and children nodes can be defined as the context words.

17.4 The advantage is that the context words with their relative position have
more information and more accurate. The disadvantage is enlarging the table of
the context embedding, which will increasing parameter size. In addition, in test
phrase, it will be more OOV words occurred.

17.5 (a) Word embedding is the representation of a word, therefore, dot product
can be performed between two word embeddings to calculate the similarity of two
words.
(b) In the space of word embedding, words of the same category are close to each
other. Therefore, we can calculate the distance between a group of word embed-
dings to find the outlier.

17.6
µa = E[a] =

0.55+0.65+0.8+0.2+0.99+0.1
6

= 0.548

µb = E[b] =
0.52+0.43+0.75+0.1+0.875+0

6
= 0.446

µc = E[c] =
0.6+0.7+2.3+0.1+0.99+0.22

6
= 0.485

σa =
√

E [a2]−E[a]2 = 0.315

σb = 0.316

σc = 0.307

ρ(a,b) =
E[ab]−E[a]E[b]

σaσb
= 0.98

ρ(a,c) = 0.78
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17.7 No. Because sentences cannot be enumerated, which leads to severe OOV.
In addition, each sentence appears only a few times in the corpus. Therefore, our
model has difficulty building lookup table from the data. We can concatenate the
result of pooling function over a set of vectors with the last hidden state of sequence
model to represent a sentence.

17.8 Yes. After pre-training each word is well represented, however the per-
formance of those model for directly calculating word similarities and detecting
analogy empirically bad, because those contextualised word embeddings is used
under the condition that has context, not a single word.

17.9 We can freeze the parameter of those model, and using the contextualised
embeddings on dependency parsing, semantic role labelling and word sense dis-
ambiguation. Compare the performance of those model with Glove and current
baseline of this tasks.

17.10 We can stack the encode of transformers as the model encoder. For the
local output layers we can use the output layer of local transition-based Model 2 in
chapter 15 to combine feature vector and make prediction.

17.11 Naive multi-task learning shares a set of common model parameter, which
means such a method doesn’t has specific model parameter for different tasks.
However, parameter generation network can generate task-specific parameter with-
out losing the mutual information of different tasks.

17.12 TO BE DISCUSSED

17.13 See Algorithm 15

Algorithm 15: Dynamic masking in 17.13

Inputs: D = {di}|mi=1 denotes training instances, di = {s j}|Ni
j=1;

for di ∈ D do
for s j ∈ di do

RANDOMMASK(s j)

for i′ ∈ [1, ... , m] do
PRETRAIN(d′i)



Chapter 18 Reference Answers

18.1 (a)

logP(Y | X) = logΣZeW> f (X ,Y,Z;θ)− log∑
Y ′

∑
Z′

eW> f (X ,Y ′,Z′;θ)

∂ logP
∂θ

=
∑Z

∂eW> f (X ,Y,Z;θ)

∂θ

∑Z eW> f (X ,Y,Z;θ)
−

∑Y ′ ∑Z′
∂eW> f (X ,Y ′,Z′;θ)

∂θ

∑Y ′ ∑Z′ eW> f (X ,Y ′,Z′;θ)

=
∑Z eW> f (X ,Y,Z;θ)W> ∂ f

∂θ

∑Z eW> f (X ,Y,Z;θ)
−

∑Y ′ ∑Z′ eW> f (X ,Y ′,Z′;θ) ∂ f
∂θ

∑Y ′ ∑Z′ eW> f (X ,Y ′,Z′;θ)

∂ logW
∂W

=
∑Z

∂eW> f (X ,Y,Z;θ)

∂

∑Z eW> f (X ,Y,Z;θ)
−

∑Y ′ ∑Z′
∂eW> f (X ,Y ′,Z′;θ)

∂W

∑Y ′ ∑Z′ eW> f (X ,Y ′,Z′;θ)

=
∑Z eW> f (X ,Y,Z;θ) f (X ,Y,Z;θ)

∑Z eW> f (X ,Y,Z;θ)
− ∑Y ′ ∑Z′ eW> f (X ,Y ′,Z′;θ) f (X ,Y ′,Z′;θ)

∑Y ′ ∑Z′ eW> f (X ,Y ′,Z′;θ)

(b) Forward-backward algorithm gives the marginal probability of each state, and
Viterbi algorithm gives the probability of the most likely sequence of states.
(c) We define the label sequence score F(y | x,Θ) as the maximum score among its
latent sequence:

F(y | x,Θ) = max
h:Proj(h)=y

F(h | x,Θ),

where Proj(h) is the projection from a latent sequence h to a label sequence y :

Proj(h) = y⇐⇒ h j ∈ Hy j for j = 1, . . . ,m,

and F(h | x,Θ) is the score of a latent sequence:

F(h | x,Θ) = Θ · f (h,x) = ∑
k

Θk · fk(h,x),

where fk denotes the k-th value of the global feature vector.

18.2 Probability function is represented by the softmax function. The parameters
of HMM are represented by neural network parameters. We use two neural mod-
ules to represent transition model and emission model respectively. Then calculate
gradient descent algorithm and use softmax function to update model parameters.
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18.3

18.4 We can represent each subsequent using the output of BiLSTM in each step,
which contains global information from two directions. The advantage is that it
contains more information instead of information from previous steps.

18.5

18.6 First, we can use embedding matrix to map each words in span Xi: j to vec-
tors. Then we have several methods to integrate information in vector to one vector
such as pooling function ,average sum and weight sum with attention mechanism.

18.7


