Natural
Language
Processing
Westlake University

Yue Zhang

& A K 4

ne NLP

Chapter 14

Representation Learning

Contents NP

NLP
14.1 Recurrent neural network « 14.4 Representing graphs
« 14.1.1 Vanilla RNNs « 14.4.1 Graph Recurrent Neural Network (GRN)
e 14.1.2 Training RNNs * 14.4.2 Graph Convolutional Neural Network (GCN)
« 14.1.3LSTM and GRU * 14.4.3 Graph Attention Neural Network
* 14.1.4 Stacked LSTMs * 14.4.4 Feature aggregation
14.2 Neural attention * 14.5 Analyzing representation

* 14.2.1 Query-Key-Value attention « 14.6 More on neural network training

e 14.2.2 Self-Attention-Network (SAN) « 14.6.1 AdaGrad

14.3 Representing trees * 14.6.2 RMSProp
« 14.3.1 Child-sum tree LSTM « 14.6.3 AdaDelta
* 14.3.2 Binary tree LSTM 14.6.4 Adam

e 14.3.3 Tree LSTM features and

14.6.5 Choosing a training method

sequence LSTM features

Contents P N P

14.1 Recurrent neural network

Recurrent Neural Network ne NLP

Disadvantages of pooling and CNN
« Pooling only

* Limited representation power
* Insensitive to the input order

« Cannot capture non-linear interactions between input vectors

« CNN

* Cannot capture long-range dependencies between input vectors

Recurrent Neural Network ne NLP

Recurrent Neural Network (RNN)

A recurrent state-transition process for left-to-right of the
input sentence

 The state represents the syntactic, semantic and discourse context from
the beginning until the current input

 Using a standard perceptron layer with non-linear activation to achieve

the recurrent state-input combination function

Contents P NP

14.1.1 Vanilla RNNs

Vanilla RNNs ne NLP

* Aninput sequence: X;., = Xy,Xy,...,X, , 11 is the length of the sequence

 An initial state: h (set to zero or a randomly initialized model parameter)

* How to calculate an output sequence h.(t € [1,...,n]) using a vanilla RNN?

Vanilla RNNs nP

 Given the previous state h;_; and the current input x,,
the current state h, can be calculated as

h, = RNN_STEP(X,,h) f f

= f(whht—l T Wxxt +b), X¢_1 X¢

f: anon-linear activation function such as tanh
W" W* b: model parameters, shared among different time steps

The final vector h,, can be used for representing the input X;.,.

Y

ht+ 1

Xt+1

NLP

Vanilla RNNs nP

 Given the previous state h;_; and the current input x,,
the current state h, can be calculated as

h, = RNN_STEP(X,,h) f f

= f(whht—l T Wxxt +b), X¢_1 X¢

f: anon-linear activation function such as tanh
W" W* b: model parameters, shared among different time steps
The final vector h,, can be used for representing the input Xj.p,.

* We learned feed-forward processes.

* How do we understand a recurrent process?

Y

ht+ 1

Xt+1

NLP

Vanilla RNNs ne NLP

Layers and time steps

* A better understanding of RNNSs: exchanging time for space.

+ Viewed as “unfold”: a standard multi-layer perceptron with lower layers
towards the left and upper layers towards the right.

 The size of the network dynamically grows with the size of the input sequence.

 Sharing of model parameters across layers.

h,_, 1 hy | ey

h A A A

X Xt-1 Xt Xi+1

Original Unfold

Vanilla RNNs

Layers and time steps

Long-range dependency.

Only contains the history on the left when encoding each word.

h

X

Original

h, 1 gy
A A
Xt Xt+1
Unfold

12

NLP

Vanilla RNNs ne NLP

Output layer
« Useh, asfinal h
* Use pooling of hy, hy, ..., h,

h,_, 1 hy | hyyq

h A A
7}

X Xt-1 Xt X1

Original Unfold

13

Vanilla RNNs ne NLP

Bi-directional RNNs

 Concatenating the historical context using the left-to-right RNN (RNN)
and model future information using the right-to-left RNN (RNN)

3 %
« Parameters of RNN and RNN can be different

=

i Tli—1 ” Tli]_'

i+1

—

hiy [I B R ;.
vV,

i+1

An example of Bi-directional RNNs

Vanilla RNNs ne NLP

Bi-directional RNNs

Denote a bi-directional RNN by the function BiRNN (X):

H = RNN(X) =[hi;hz;...;h,]
H = RNN(X) =[hi;hz;...;h,]
BiRNN (X) ~-H®H =[ﬁ1 @ﬁl;ﬁz C‘Bflz;...;fln (‘Diin]

* @: the vector concatenation operation

* A concatenation of the left-to-right feature vector h, and the right-to-
left feature vector h, gives the final representation of the t-th word

representation

Vanilla RNNs ne NLP

Bi-directional RNNs

Output layer

+ Use h_n> @D (h_n as final h.

* Use poolingof hy @ hy, h, © h, ..., h,, ® h,,.

Contents P NP

14.1.2 Training RNNSs

17

Training RNNs e NLP

* Supposing that h,, is used as final hidden state for RNN.

* Losspasstoh,

» Need loss for W', W?, b and also x4,x,, ..., X,

Training RNNs e NLP

Back-propagation through time (BPTT)
« RNNs are trained using unfolded representation with back-
propagation through time (BPTT).
« Assuming that the activation function is
f = tanh
« The RNNs forward-propagation computing returns as

h, = tanh(W"h,_; + W¥*x, + b)

h,_, 1 hy | hyyq

A A A

X¢-1 Xt Xt+1

Training RNNs e NLP

Back-propagation through time (BPTT)

Given a vector value ;TL passed down from layers above, BTTP returns
t
results as follows:
oL o (0L
OX, =W (8ht

OL
=(W"HT.
-V (

oL oL
= ®(1-h?))-h’
awh (aht (t)) t—1
oL oL
= ®(1-h?))-x"
OW" (8ht (t)) '
oL oL
ob oh,

®(1-h?))

oL
® (1—-h?
o (1-h?%))

®(1-h,),

&: element-wise product

Training RNNs e NLP

Gradient issues

RNNS can be difficult to train using SGD due to gradient exploding

and gradient vanishing problems.

oL . :
For - —— with a relatively large number ¢, we have
n-t
8L INT) aL _h2
ahn—t _(W) ahn—t+1 ®(1 hnHl)j
(WY (wh)T.(ahaL ®(1—hit+2))®(1—hit+l)J

n—t+2

(WYY (@)

Training RNNs nw

Gradient issues
« Reasons for Vanishing gradients

* Duetol - h,%_tﬂ- € [0,1], ®§-=1 (1- h,%_t+j) can be extremely small;

. (Wh)T is not initialized properly with a small value, ((Wh)T)t can be very small
« Reasons for exploding gradients

t
. (Wh)T is not initialized properly with a large value, ((Wh)T) can be very large

NLP

Training RNNs e NLP

Tricks for avoiding gradient issues
e Using truncated BPTT to mitigate the gradient exploding problem
+ Using appropriate weight initializations

 Using alternative RNN models such as GRUs and LSTMs

h,_, 1 hy | hyyq

A A A

X¢-1 Xt Xt+1

Training RNNs

Training bi-directional RNNs

ne

Two different aspects from training BIRNNs and vanilla RNNSs:

+ Bothh, and 1(1_1 receive back-propagated gradients

« Eachx; (i € [1,...,n]) receives back-propagated gradients from both h; and

F
h;. These two gradients should be summed as the final gradient.

h,

—
hiv, j—

&

—

h;_,
Xi-1

\J

‘ \ hiiq
X

i+1

An example of Bi-directional RNNs

NLP

Contents P NP

14.1.3 LSTM and GRU

25

Long-Short-Term Memory nP

Long-short-term memory (LSTM):
e An RNN variant which allows better SGD training by better control of

back-propagation gradients over a large number of steps;
 Splitting the hidden state of each recurrent step into a state vector and
a memory cell vector.
» Using gates for fine-grained control of "remembered" and

"forgotten" information by each feature

NLP

Long-Short-Term Memory ne NLP

Given an input X;.;,, the state vector Hy.,, and cell vectors (representing

a recurrent memory in LSTM) C;.,,, with randomly initialized model

parameters hy (initial state) and cq(cell vectors),

How to calculate the standard LSTM step

h;,c; = LSTM_STEP(X¢, hy_1,Ct_1) ?

WP \WestlakeNLP

28

Long-Short-Term Memory ne NLP

A standard LSTM recurrent step can be calculated as follows:
i, =c(W"h,_, +W"x, +b")
f =c(W"h_ +W”"x, +b”)
g =tanh(W*h,_, + W¥x, +b?)
¢, =i ®g +f ¢,
0,=c(W”h,_ +W”x, +b°)
h, =0, ®tanh(c,)

Wi, Wi b, W WX b/ W9t WI* b9, WO WX and b° are model parameters;
g.: nonlinear transformation for better representing the input x;;

i¢, f;, 0,: input gate, forget gate and output gate, respectively;

o, ® : the sigmoid function and the element-wise multiplication (i.e., Hadamard

product) operation, respectively.

Long-Short-Term Memory ne NLP

—(0 | [o|[tanh] [0 |

Input Gates < | I =
f—» —> —»
\J \' N oS J "\ P,

Forget Gates Output Gates I

&)) &)

- Long term memory

Short term memory

30
Figure credit: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long-Short-Term Memory ne NLP

Gates in LSTM
« LSTM recurrent steps are characterized by the use of gates through

the Hadamard product operation
* A gate vector takes a real value between 0 and 1
* The element-wise product of a gate vector and a feature vector

filters each feature with a decay

Long-Short-Term Memory ne NLP

Gates in LSTM

* Input gate (i;): controls the reading process of the current input
 Forget gate (f;): keeps the history in memory
« Output gate (0;): decides the mapping from a memory cell to a

hidden vector

Long-Short-Term Memory ne NLP

Bi-directional extension

The bi-directional LSTMs (BiLSTM) can be defined as follows:

H = LSTM (X) =[h;hz;...:h.],
H = LSTM (X) =[hi;h2;...:h.],
BiLSTM(X)=H®H =[hi ®hi;h> ®h:;...;h, ®h,],

LSTM: left-to-right LSTMs
%
LSTM: right-to-left LSTMs

Gated recurrent units np NLP

Gated recurrent Units (GRU)

Compared to RNNs, LSTMs give better results, but much slower
due to increased model parameters and computation steps;

Gated recurrent units (GRU) simplify LSTM by removing the cell
structure, and using only two gates (a reset gate and a forget gate)

Better deal with back-propagation gradients with a faster speed

Gated recurrent units ne NLP

Given an input sequence: XI' = X4,X,...,X, , a standard GRU cell h; =

GRU_STEP(X¢, hy_1) is given by

r, = o(W™"h,_; + W*x, +b")
z, = o(W?"h,_; + W?*x, + b?)
g; = tanh(W"(r, ® h,_;) + W"*x, + b")
h, =(1.0-2z)Qh;; +2, R g,

W™ W™ b", W2, WZX, bZ, W W* and b": model parameters
I;: the reset gate
z;: the forget gate

Contents P NP

14.1.4 Stacked LSTMs

36

Stacked LSTMs np NLP

* Recurrent neural networks can be stacked to multiple layers to
improve the representation power
« Each layer in stacked LSTMS feeds its output vectors as input to the

next layer in the bottom-up direction.

[hl‘l]| h{z] R,

(BiLSTM layer |)
1 :

[hl%)| h]%]

| BiLSTM layer 2)
T T

[hI%))

| BiLSTM layer | J
: L]

An Example of Stacked BiLSTMs
37

Stacked LSTMs np NLP

A stacking method can be calculated as follows:

H=XH =X
H =LSTM.(H),H =LSTM-(H),...,H =LSTM,(H)
—LSTM\(H), H =LSTM»(H),....,H =LSTM,(H)

H :HZ@HZ=[h1@h1;h2@h2;...;hn@hn]

h{ : the output hidden vector of the ¢-th word at the j-th layer

H/: the output hidden vectors of the whole sequence at the j-th layer

H: the final output vectors

LSTM; and LSTM; : left-to-right LSTM and the right-to-left LSTM at the j-th layer, respectively

Contents P NP

14.2 Neural attention

39

Neural Attention ne NLP

Neural Attention

 An alternative method to pooling operations for aggregating a set of
vectors

« A weighted sum of vectors in a sequence with regard to certain targets

* Can be used to find a single vector representation of a sentence

Neural Attention ne NLP

Given a target vector q(q € R?) and a list of context vectors H = hy, hy, -+, h,, (h; €

RY, d is the dimension of q), the function can be defined as:

s, =score(q,h,) (i€ll,...,n)])

L _exp(s)

i~ N : :
ZCXP(Si) (softmax normalization)
i=1

c= Z a. xh, (weighted sum),
i=1

c: output of attention(q, H), a weighted sum of the content vectors, which can
be used as a context-aware feature representation of q

s;: a relevance score between q and h;

a;: normalised relevance scores based on s;

a = [ay, @y, -, a,]: a probability distribution over the content vectors

Neural Attention ne NLP

Score function

Dot-product attention
 Defines the score between the target vector q and the context vector h

* No model parameters

« measures the similarity between q and h

score(q,h) = q’'h

Neural Attention ne NLP

Score function

Scaled dot-product attention

Scales the dot-product attention score by \/—15 , where d is the dimension of q and h

(@h) =D
score(q,h) = —
Ja

Neural Attention ne NLP

Score function

General attention

A parameter matrix W (W € R%1%92) to capture the interaction between each

element in q (q € R%*) and each element in h (h € R%2)

score(q,h) = q" Wh

Neural Attention ne NLP

Score function

Additive attention

 First performs a linear combination of q and h
« then applies a feedforward neural layer before squeezing the resulting vector

using a parameter vector v

score(q,h) = vi'tanh(W(q @ h) + b),

v, W, b are model parameters

@ denotes concatenation

Neural Attention ne NLP

Score function

* For dot-production attention and scaled dot-production attention, q and
h must have the same dimension size;
* For general attention and additive attention, q and h can have

different dimension size

Back-propagation Rules e NLP

* Loss over ¢ given

* Calculate lossover q,h; (i € [1,...,n])

Neural Attention nP

Correlation with gating functions

* Given a set of hidden vectors Hy., = hy, h,..., h, and a target vector q,

a set of gate vectors for aggregating H.,, can be calculated as

s, = W/q+W'h,
g, = softmax(s,,s,,..s,) (element-wise softmax)
C= Zgi ®hi’
i=1

W4 and W" are model parameters

& denotes element-wise multiplication

 Offering more fine-grained combination of input vectors, but is also

computationally more expensive

NLP

Contents P N P

14.2.1 Query-Key-Value attention

49

Query-Key-Value Attention np NLP

* Similar to database queries, contexts in neural attention also contain a
set of key-value pairs;

 Context vectors can be regarded as associated memories in this case

 Given a target query, comparing the query vector with the key vectors

and return the related value vectors

Query-Key-Value Attention np NLP

 Suppose: the query vector q, the key vector K;.,, = [Kq; Ky; -+ Ky
and the value vector Vy.,, = [vq; Vy; ++; V|
« For each key vector k;, the corresponding value vector v;, the

query-key-value attention function attention(q, K, V) is
s, =score(q,K,) (i€ll,...,n])
0 = exp(s;)

i N
> exp(s,)
i=1

n
=Y ay,
i=1

c: output of attention(q, H), a weighted sum of the value vectors with the. i-th weight

(softmax normalization)

(weighted sum),

score being s;, s;: attention score between the query vector q and the i-th key vector k;

Query-Key-Value Attention nP

Query-key-value attention with a sequence of queries

Deal with sequence of queries: call call the attention function
separately for each query, and then concatenate the results
Given the sequence of queries Q1.; = [q1; q2; -**; q;], key vectors K

and value vectors V, the attention function attention(Q, K, V) is

¢, = attention(q,, K, V)
¢, = attention(q,,K,V)

¢, = attention(q,, K, V)
attention(Q,K,V) =[c,;¢,;--;¢,],

c; € RY: the attentive result of the i-th query

NLP

Query-Key-Value Attention np NLP

Parallel computations
Using matrix multiplications to enable parallel computations for

reducing computational expenses

S = score(Q,K)
A = softmax, (S)

C = VAT: final result, which is taken as attention(Q, K, V) € R**¢. The i-th row represents the
attentive result vector of q;

S € R™™: a score matrix, sf;jjj(also donated as s;;) is the relevance score of q; and K;
softmax,(S): applying the softmax function to normalize each column in S

A € R attention score matrix

Contents P NI P

14.2.2 Self-Attention-Network (SAN)

54

Self-Attention-Network nP NLP

Self-Attention-Network (SAN)

 Self-Attention-Network (SAN) aggregates a set of vectors, which can be
useful to design an attention network structure

« Given X;., = Xq,Xy,..., Xy, the output vector Hy.,, =

attention(X.,, X1.,, X1.,) can be calculated as

H,.,, = attention(X{..;, X1.1,, X1:1)

h;: an attentive representation of X.,, by using x; as a query

Self-Attention-Network nP NLP

Two advantages for SANs

 Allowing the representation h; in each layer to take into
consideration all x;s globally

* The time complexity of RNNs is 0(n") , while the time complexity
of SANs is 0 (n)

 Transfer (Chapter 16) is a more advanced SAN framework.

Contents P NP

14.3 Representing trees

57

Representing Trees e NLP

Representing Trees
* Trees structures are useful for representing syntax, semantics, etc

e Tree LSTMs

 constructed by extending a sequence LSTM model

* recurrent time steps can be taken in the bottom-up direction and receive
information from its subnodes recurrently

* top tree node can contain features over the entire tree structure

* multiple predecessors in a tree LSTM model

Representing Trees e NLP

Figures of Tree LSTMs

. —

1,L 1,R
h‘t—l ht—l

(b) Child-sum tree LSTM (c) Binary tree LSTM

Sequence (a) and tree LSTMs (b and c).

Contents P NP

14.3.1 Child-sum tree LSTM

60

Child-Sum Tree LSTM nP NLP

« Representing arbitrary trees through turning multiple child nodes
into one by summing up their hidden states

« A bottom-up recurrent computation of hidden states, and the input is
rearranged hierarchically from the root

 The values of hidden nodes are calculated layer by layer

advmod went
N a
oY 2 d)
A % 177001
(%
nsubj det He office earlier
/\ Q{b‘%e Oé/
He went to the office earlier
(n) (=] (=) (=) s) (=) oD

Word order Hierarchy

Child-Sum Tree LSTM nP NLP

Notations

X1n = X1,X3,...,Xy: embedding vectors of an input sentence

h, (t € [1,...,n]): hidden state vectors of the input

xi: word embedding vector indexed in the bottom-up order, ¢ is the
layer index from the bottom, and i is the index within the layer

h: hidden state vector indexed in the bottom-up order

WP \WestlakeNLP

63

Child-Sum Tree LSTM nP NLP

Notations
Given an embedding node x;,
* its predecessor node hidden state can be represented as

petiD) peti2) hc(t,i,m,‘}) e[2
t—-1 o g—q Mg AN
P,
> %Q I))OQ'

* its corresponding cell states can be represented as {5y ste(F]) emtier[=

c(t,i,1) c(t)i2) c(t,im;)

t—1 Ct—1 €y 4 &
where, m}: the number of child nodes of x} to (4] the(_}
c(t,i,j): the index of the j-th child node of x; among c(221) = 1

nodes on the (t — 1)-th layer

Child-Sum Tree LSTM nP NLP

Hidden states of all its child nodes
hﬁfﬁi"'), j € [1,...,mL] are summed up into a single hidden

state h_; as

Child-Sum Tree LSTM nP NLP

Gates for Child-Sum Tree LSTM
» Given hl_; and x!, the input gate ii and output gate ol are
calculated as
i; = o(W"h}_, + Wk} + b')
o} = o(W°"h}_; + Wo*x{ + b°),

Wi WX pt WO WO and b° are model parameters

* For a cell state ct(H)(] € [1,...,m}]), the forget gates are calculated

as

£ = g(Whh{E) + Wikl 4+ b)),

W/, W/* and b/ are model parameters

Child-Sum Tree LSTM nP NLP

Calculating the cell states ¢; and the hidden state ht

« The cell state c; is calculated as
g’ = tanh(W*'h!_ + W¥x! +b*)

m,
I sl I,j c(t,i,j)
ct—1t®gt+2ft R,

j=1
W9, W9 and b9 : model parameters
g: a new cell state with the input x! being considered

®: Hadamard product

> hi can be calculated as L= ol ® tanh(C%)

Contents P NP

14.3.2 Binary tree LSTM

68

Binary Tree LSTM np NLP

 Binary tree: each node has at most two child nodes
* The hidden state of each child node to be considered separately
* More fine-grained in computing gate and cell values

» Goal: calculating a hidden vector h! for each node in a tree LSTM. (¢

is the bottom-up layer index and i is the in-layer node index)

Binary Tree LSTM np NLP

Notations

x{: word embedding vector indexed in the bottom-up order, t is the layer index
from the bottom, and i is the index within the layer
h: hidden state vector indexed in the bottom-up order

c: cell state vector indexed in the bottom-up order

h?ftl’i’L), h?ftl’i’R): hidden state values of left and right child of x!

c?_(tl’i’L), c?_(tl’i’R): cell values of left and right child of x}

b(t,i,L), b(t,i, R): the index of the left and right child of x} among nodes on the
(t — 1)-th layer

Binary Tree LSTM np

For binary tree LSTM, recurrent LSTM steps follow sequential LSTM cell

computation, but differentiating the two predecessor states of each node

The input gate it and two forget gates f,f’L and f,f’R are computed as follows:

o ihy, b(t,i,L) ihy,b(t,i,R) ic b(t,i,L) ic b(t,i,R) I
L __ Jihy b(2,i,L) Jih b(2,i,R) Jie Jb(t,i,L0) Jie Jb(t,i,R) /i
£ =c(W;"h, "7 +W,"h "7 + W, ¢ " + W e """ +b’)

£ = (W4 W+ WAl 4 Wi b/

Wih, Wih, WiC, WiC, bi, w[lh’ W}];lh, W[lc, W}];lc’ bfl, W[rh’ w}];rh, W[TC, W}];TC’ bfl

and b/t are model parameters

NLP

Binary Tree LSTM np NLP

The cell state and hidden state values are computed as follows:

g’ = tanh(W# 2" + WEhUHN 1 p*)
¢ =i ®g +{"F QN 4 @l
0, = o(W"h, " + W'h/ (" + W ¢, +b”)

h! =0, ® tanh(c)),

th, Wgh, b9, W°" W2 W°¢ and b° are model parameters

Tree LSTM Features and Sequence n NLP
LSTM Features

 Difference between Tree LSTM and Sequence LSTM
« Sequence LSTM: Integrating local word-level features into hidden
representations that reflect a sentence-level context
 Tree LSTM: Control the process of information integration,
whereby syntactically correlated words are integrated before
unrelated words, stronger in capturing long-range syntactic

dependencies
* The representation power of tree LSTMs can be further combined with that

of sequence LSTMs by stacking a tree LSTM on top of a sequence LSTM

Tree LSTMs and DAG LSTM ne NLP

* Directed Acyclic graph (DAG)

o Extension of tree LSTM into Lattice LSTM,

* More than one predecessors and successors.

Contents P NP

14.4 Representing graphs

75

Representing Graphs e NLP

Examples of general graph structures

« Semantic graph
 Cyclic structure, which causes difficulty in finding a natural order of
nodes in a graph

« Hard to define recurrent time steps for calculating hidden states

Cyclic graph

Representing Graphs e NLP

To calculate a hidden state for representing a node in a large

graph-level context:
 graph nodes can be made independent of a node order

* each node can collect information from its neighbors recurrently

Recurrent graph state update

77

Representing Graphs e NLP

To calculate a hidden state for representing a node in a large graph-level context:
* time steps can be taken in a direction that is orthogonal to the graph edges
 View as a sequence of "snapshots” of the graph structure
 Each "snapshot” represents a recurrent time step
At each time step, the hidden state is updated by collecting information
from the hidden states of itself and its neighbors in the previous time step.
« Viewed as a message passing time step, where each node collects

information from its neighbors as a message for updating its own state.

Representing Graphs e NLP

Notations

{V> E}: the graph

V ={vq,v,,... v|V|}: nodes in the graph
E ={eqe,,. ..,e|E|}: edges in the graph

e; = (v}, 1;, v}): the connection of two nodes v} and v{ with an
edge labelled [; (i € [1,..., |E|])

For directed graphs, we assume that e; points from v} to v/

Representing Graphs nP

Graph neural network (GNN)

* Assigns an initial hidden state vector h} for each v; (i €
[1,...,|V]]), and then recurrently calculates h!, é, e, lT as the
hidden state for representing v;

- h! represents the hidden state for node i at step t

* The total number of time steps T can be decided empirically

according to a task that uses the representation

NLP

Contents P NI P

14.4.1 Graph Recurrent Neural Network (GRN)

81

Graph Recurrent Neural network (GRN) ¥ NLP

Graph recurrent neural network (GRN)

» Calculating the hidden states h}, h5, ..., h% for anode v; in a
recurrent process

» Given an aggregated previous state m;_; and a current input x*,

the hidden state hi(t € [1, ..., T]) is calculated as:

h, =Lst™ STEP(M,_,X),

m!_,: the aggregation vector of previous hidden states of v*

x': the ageregation vector of the input representation over the neighbors of v
gareg p p g

Graph Recurrent Neural network (GRN) ¥ NLP

Graph recurrent neural network (GRN)

» The aggregated state mi: message received by v; at time ¢
 For undirected graphs, or disregarding edge directions in directed

graphs, given neighbours of node v; as (i), m._; can be represented as:

i k
m; , = z h;_,

Graph Recurrent Neural network (GRN) ¥ NLP

Graph recurrent neural network (GRN)

x! represents the inherent natures (integrating both node and edge

information) of the graph node v; can be defined as:

xi= Y (W (emb(v) ® emb?(1(i,k)) @ emb(v)) +b"),
ken(i)

emb: the embedding for a node
emb¥®: the embedding for an edge
L(i, k): edge label between v; and vy,

W* and b*: model parameters

Graph Recurrent Neural network (GRN) ¥ NLP

Differentiating edge directions

For directed graphs, neighbor nodes can be grouped by the

edge direction for more fine-grained representation.

m;_, for v; can be calculated as: m = S b
t—1 t—1
keQq (i)
i k
mt—l o Z ht—l

2;(i) and 2,(i): all incoming and outcoming neighbours, respectively

m:', and mi" ;: previous states from neighbors with incoming and outgoing edges

m!_,: the concatenation of mi"; and mi,

Graph Recurrent Neural network (GRN) ¥ NLP

Differentiating edge directions
x! of directed graphs can be defined by combining

information in both edge directions

x'= 5 (W (emb(v,) ®emb(1(i,k)) ® emb(v,)) +Db)

keQ4 (1)
X' = S (W (emb(v,) ® emb(1(i,k)) ® emb(v,)) +Db)
keQ (i)
x =x ®x",

W1, byr, Wy, and b, : model parameters

L(k,i): the label of edge from v to v;

Contents P NI P

14.4.2 Graph Convolutional Neural Network (GCN)

87

Graph Convolutional Neural network (GCN) np

Graph convolutional neural network (GCN)

 GCN uses a convolution function to calculate hi based on hi_,
- Using the same equations with GRN for calculating m} and x:
 For updating node states, GCN uses the convolutional function

as follows:

L = g(W™mL_; + W*xL + b),

W™, W* and b are model parameters

NLP

Graph Convolutional Neural network (GCN) np NLP

Different edge labels

A variant of GCN collects information separately from different
neighbors, using different weights for edges with different labels.
Donating edge label between v; and vy as [(i, k) and edge

direction between v; and vy, as dir(i, k), a GCN can be redefined as

i m k X k
ht o J(Z (“]l(i,k),dir(i,k)ht—l +“]l(i,k),dir(i,k)xt +bl(i,k),dir(i,k)))

keQ(i)

X' = (emb(vk) S emb(e(i, k)) S emb(vl.)),

Wi io,airii): 111X 2 sets of model parameters to replace a single W™. Similar extension to
W*¥and b. L:the set of edge labels

Graph Convolutional Neural network (GCN) np NLP

Adding Gates

Another variant of GCN applies gates to control the amount of

information passed from each h*(k € 2(i)) to h!

The value of a gate gi’k can be defined as:
Lk _ ok wd g
g/ =0 (e 1 Wit iy aircig) T Puciso,air i)

g g
Wi ,air (i) @094 by iy giri i) are |LIX2 sets of model parameters

The gate can be used for updating node states as follows

i ik m k X k
h, = O-(Z g ®(“’1(i,k),dir(i,k)hz—1 +“]Z(z’,k),dir(i,k)xt +bl(i,k),dir(i,k)))

keQ(i)

Contents P NI P

14.4.3 Graph Attention Neural Network

91

Graph Attention Neural network (GAT) W NLP

Using attention functions for aggregating information from
neighbor states at each recurrent step

hi for v; at step t is defined as follows:

hiit = 2 Aik h§—1
ken(i)
a;.: normalising a set of attention scores, each calculated using the
previous hidden states h_; and h¥_, as follows:

Sik = G(W(hi—l D hk—l))

_exp(sy)
Oy = .
Z exp(sy)

K eQ(i)

W: a model parameter

Graph Attention Neural network (GAT) W NLP

« GATs also have variants

 Graph Transformer is built on Transformer.

Contents P NP

14.4.4 Feature aggregation

94

Feature Aggregation e NLP

* GNNs calculate a hidden state for each node in a graph structure
« Adding one aggregation layer (pooling or attention aggregation)
on top of the final h; (i € [1,...,|V|]) to obtain a single vector

representation of the whole graph

Contents P N P

14.5 Analyzing representation

96

Analysing Representation e

The neural representation vector h
Dynamically computed low-dimensional dense
* Pros
 contain automatic combinations of input features
 capturing syntactic and semantic information
* Cons
* not easily interpretable
Two indirect ways to analyse learned representation vectors
* Visualisation
* Probing tasks
 Ablation

NLP

Analysing Representation e

Visualisation

Projecting hidden representations into a two-dimensional figure to
better understand their correlations

Preserving the distance correlation between vectors to gain knowledge
about the characteristics of the representation vectors

A useful tool: t-distributed stochastic neighbor embedding (t-SNE)

NLP

Analysing Representation e

t-distributed stochastic neighbor embedding (t-SNE)

A non-linear dimensionality reduction technique that aims to preserve the
distance correlation between vectors in the original high-dimensional vector

space and then projected to two-dimensional space.

20 A
egative

o
0 Lo
% x X%’sa?o«
. @w‘?};&%
10 waa s x %
e
2 X X
20 mx
X X

=20 =15 -10 -5 0 5 10 15 20

An example of t-SNE visualisation of positive and negative documents.

99

NLP

Analysing Representation e NLP
Probing tasks

 Auxiliary tasks that predict the features that we expect a learned
representation to capture.
* Using a set of additional output layers.
* Procedures
* given a set of documents with gold-standard outputs
* run the representation model and dump the vector representation
e train a very simple classification model, and treat the probed task as
the output
* the more accurate the trained simple model is, the more confident we

are that the representation vectors contain relevant information

Ablation ne NLP

e Remove a vector from a set of hidden states.

 Check output.

Contents P N P

14.6 More on neural network training

102

More on Neural Network Training e

« Optimisation technique: A key to successful representation
learning especially for neural network training

« Simple methods such as SGD may not give the best optimisation
towards a training objective because the neural network
structure becomes increasingly deep and complex

* This section will list more alternatives for optimisation

NLP

Contents P N P

14.6.1 AdaGrad

104

AdaGrad np NLP

« AdaGrad: an optimisation algorithm that adaptively sets the learning
rate for each parameter based on the gradient

* Notations
* 0:model parameters

 g: the corresponding set of gradients

« For each parameter 8; € (i € [1, ..., |0|]), AdaGrad maintains an

accumulated squared gradient sg; from the start of training to estimate

the per-parameter learning rate.

 The learning rate 1; for 6; is inversely proportional to the root of sg;

More on Neural Network Training e NLP

» The update rules of AdaGrad can be written as:

g _ (9L(@t_1)
t 00,1
S81i = S&8—1,; T gtz,i
et,i — et—l,i — il

L:1oss

e: a hyper-parameter for numerical stability

t: the time step number in parameter update

sg:i: the sum of squares of the gradient with respect to 6;
« Common hyper-parameter settings:

¢ e=1le78

 n=0.01

Contents P N P

14.6.2 RMSProp

107

RMSProp np NLP

 Problems for AdaGrad

* the learning rate decreases monotonically and aggressively, which
can lead to early and suboptimal convergence
* sensitive to initial gradients
« RMSProp solves the problems of AdaGrad by
* using attention to a limited history window instead of all history
gradients
* the initial gradient does not greatly affect the learning rate of

future time steps

RMSProp e NLP

« The update rules of RMSProp can be written as:

_OLO®,,)
8 20,

E|g’|,=pE|g’ |, +(1-p)g

RMS|g|, = /E|g?|; + ¢

®t = ®z—1 o 7 S
RMS | g]|,

E|g?|;: the dynamic average of the squares of the gradients. p: a hyper-parameter
controlling the percentage of the previous average and the current gradient
 The remaining updating rules are the same as AdaGrad

« Common hyper-parameter settings:
c p=09 n=0.001

Contents P N P

14.6.3 AdaDelta

110

AdaDelta np NLP

 dealing with the learning rate decay problem of AdaGrad, with an

exponentially running average of the square of history gradients

* replacing manual selection of the initial learning rate n with an
estimation of 460 at the ¢-th timestep

« The key idea is to make the parameter update 46 proportional to the

parameter O itself

AdaDelta np NLP

« The update rules of AdaDelta can be written as:

E|A®%| = pE|AG%|—1 + (1 — p)AO;
RMS|AB|, = /E |AO2|, +e.

A@: the parameter change

E|]467| : the exponential running averaging of the squares of the parameter change

* RMS|AO|; remains unkown before calculating 460

 Therefore, AdaDelta approximate RMS|46|; by assuming RMS(-) function is locally

smooth

AdaDelta np NLP

 The update rules for 40, can be written as:

RMS|46|,_,

A0, = —
t RMS|g|, ot

RMS|A60|;—4: an acceleration term, summarising the history parameter
update within a recent window

« Common hyper-parameter settings:
e p: 09

¢ ¢:1e°

Contents P N P

14.6.4 Adam

114

Adam np NLP

* integrates the ideas of momentum SGD and RMSProp by maintaining the
exponentially running averages of both the first order moment and the
second order moment

« moment: a mathematical tool for quantitative description of the shape of
the gradient function

* first order moment: records the moving average of history gradients
 second order moment: accumulates the moving average of history

squared gradients

Adam np NLP

« The two gradient estimations are defined as:

_0L(®,))
. 00,
vV, = 181‘7;_1 +(1- 181)gz

Elg"|=AE|g |, +1-5)g
* v:a first order moment estimation, acting as the momentum
* [E|g*|: a second order moment estimation, representing the running
expectation of the squares of the gradients as in RMSProp.
* 1 and B, : hyper-parameters, which are both recommended to be set to

close 1.

Adam np NLP

 The initial values of V and g are both zeroes

« Attime step t, V; (a weighted sum of gradients within time step t)

is given by

V= ﬂlvo +(1_181)g1 — (1_,81)&
v,=pv,+(0=-p6)g, =p0-5)g +(1-5)g,
— (l_ﬂl)(ﬁlgl +g2)

vV, = (1 — 181)(181Hg1 T 1t_2g2 Tt g;)

Adam np NLP

* b, which is the sum of the weights of the gradients
g1,82,...,8¢ 1s given by
bt = (1 — 181)(1B1H + 1t_2 Tt 1) = (1 — 181)2 ,Blt_i
i=1
_ Z,Blt_i _ Z,BIHI—i
i=1 i=1
= 1 o lglt 9

* by is not equal to 1, which indicates that Adam is biased towards

zero parameter update in the beginning steps

Adam np NLP

To remedy these biases, Adam uses bias-corrected estimations
. Vit

Vt —
1 - pt
The bias-corrected estimations for the second order moment is

Elgl:

1-p;

The final update rule for Adam applied to 0; is
n v,

JE|g?|¢ + €

Common hyper-parameter settings:

E|gz|t =

Or = Op_q1 —

¢ c:1le” 8

¢ 77216_3 119

Contents P NI P

14.6.5 Choosing a training method

120

Choosing a Training Method nw NLP

 The performance of these adaptive gradient optimisers can vary with
different datasets and hyper-parameter choices
* The choice of the optimiser itself can be viewed as a hyper-parameter
 Adam
* the most popular choice of the adaptive gradient optimisers
 converges much faster than SGD with momentum
« SGD
* obtain good or even better performances with careful learning

rate decay compared to Adam

Summary L NLP

* Recurrent Neural Network and LSTM

* Attention and Self Attention network

* Tree LSTMs

 Graph Neural Network (GCN, GRN, GAT)
« Explainability of neural representations

e SGD extensions.

