
Natural
Language
Processing
Yue Zhang
Westlake University

Chapter 14

Representation Learning

2

3

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

4

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

5

Recurrent Neural Network

Disadvantages of pooling and CNN
• Pooling only

• Limited representation power

• Insensitive to the input order

• Cannot capture non-linear interactions between input vectors

• CNN
• Cannot capture long-range dependencies between input vectors

6

Recurrent Neural Network (RNN)
• A recurrent state-transition process for left-to-right of the

input sentence

• The state represents the syntactic, semantic and discourse context from

the beginning until the current input

• Using a standard perceptron layer with non-linear activation to achieve

the recurrent state-input combination function

Recurrent Neural Network

7

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

8

Vanilla RNNs

• An input sequence: 𝐗!:# = 𝐱!, 𝐱$, . . . , 𝐱# , n is the length of the sequence

• An initial state: 𝐡% (set to zero or a randomly initialized model parameter)

• How to calculate an output sequence)𝐡&(𝑡 ∈ [1, . . . , 𝑛] using a vanilla RNN?

9

• Given the previous state 𝐡!"# and the current input 𝐱! ,
the current state 𝐡! can be calculated as

𝑓: a non-linear activation function such as 𝑡𝑎𝑛ℎ

𝐖$, 𝐖%,𝐛: model parameters, shared among different time steps

The final vector 𝐡& can be used for representing the input 𝐗#:&.

1

1

NN TEPR _S (,)
(),

t t t
h x
t tf

-

-

=

= + +

h x h
W h W x b

Vanilla RNNs

10

• Given the previous state 𝐡!"# and the current input 𝐱! ,
the current state 𝐡! can be calculated as

𝑓: a non-linear activation function such as 𝑡𝑎𝑛ℎ

𝐖$, 𝐖%,𝐛: model parameters, shared among different time steps

The final vector 𝐡& can be used for representing the input 𝐗#:&.

• We learned feed-forward processes.

• How do we understand a recurrent process?

1

1

NN TEPR _S (,)
(),

t t t
h x
t tf

-

-

=

= + +

h x h
W h W x b

Vanilla RNNs

11

Layers and time steps
• A better understanding of RNNs: exchanging time for space.

• Viewed as “unfold”: a standard multi-layer perceptron with lower layers

towards the left and upper layers towards the right.

• The size of the network dynamically grows with the size of the input sequence.

• Sharing of model parameters across layers.

Original Unfold

Vanilla RNNs

12

Layers and time steps
• Long-range dependency.

• Only contains the history on the left when encoding each word.

Original Unfold

Vanilla RNNs

13

Output layer
• Use 𝒉# as final 𝒉

• Use pooling of 𝒉!, 𝒉$, … , 𝒉#

Original Unfold

Vanilla RNNs

14

Bi-directional RNNs
• Concatenating the historical context using the left-to-right RNN (𝑅𝑁𝑁)

and model future information using the right-to-left RNN (𝑅𝑁𝑁)
• Parameters of 𝑅𝑁𝑁 and𝑅𝑁𝑁 can be different

An example of Bi-directional RNNs

Vanilla RNNs

15

Bi-directional RNNs

Denote a bi-directional RNN by the function)𝐵𝑖𝑅𝑁𝑁(𝐗 :

1 2

1 2

1 1 2 2

() [; ; ;]

() [; ; ;]

() [; ; ;]

n

n

n n

RNN

RNN

BiRNN

= = …

= = …

= Å = Å Å … Å

H X h h h

H X h h h

X H H h h h h h h

    

    

       

• ⊕: the vector concatenation operation

• A concatenation of the left-to-right feature vector 𝐡⃗! and the right-to-

left feature vector ←𝐡 ! gives the final representation of the t-th word

representation

Vanilla RNNs

16

Bi-directional RNNs

Output layer

• Use 𝒉&⊕𝒉& as final 𝒉.

• Use pooling of 𝒉#⊕𝒉# , 𝒉(⊕𝒉(…, 𝒉&⊕𝒉&.

Vanilla RNNs

17

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

18

Training RNNs

• Supposing that 𝒉! is used as final hidden state for RNN.

• Loss pass to 𝒉!
• Need loss for 𝑾" ,𝑾# , 𝒃 and also 𝒙$, 𝒙%, … , 𝒙!

19

Training RNNs

Back-propagation through time (BPTT)
• RNNs are trained using unfolded representation with back-

propagation through time (BPTT).

• Assuming that the activation function is

𝑓 = tanh

• The RNNs forward-propagation computing returns as

6𝐡& = tanh(𝐖*𝐡&+! +𝐖,𝐱& + 𝐛

20

Back-propagation through time (BPTT)

Given a vector value)*
)𝐡"

passed down from layers above, BTTP returns
results as follows:

2

2

1

2
1

2

2

() (1)

() (1)

(1)

(1)

(1),

()

()

()

()

x T
t

t t

h T
t

t t

T
t th

t

T
t tx

t

t
t

L L

L L

L L

L L

L L

-

-

¶ ¶
= × Ä -

¶ ¶
¶ ¶

= × Ä -
¶ ¶

¶ ¶
= Ä - ×

¶ ¶
¶ ¶

= Ä - ×
¶ ¶
¶ ¶

= Ä -
¶ ¶

W h
x h

W h
h h

h h
W h

h x
W h

h
b h

⊗: element-wise product

Training RNNs

21

Gradient issues
RNNS can be difficult to train using SGD due to gradient exploding

and gradient vanishing problems.

For -.
-𝐡!"#

with a relatively large number t, we have

()

2
1

1

2 2
2 1

2

2
1

() (1)

() () (1) (1)

() (1)

()

()

h T
n t

n t n t

h T h T
n t n t

n t

h T t t
j n t j

n

L L

L

L

- +
- - +

- + - +
- +

= - +

æ ö¶ ¶
= × Ä -ç ÷¶ ¶è ø

æ ö¶
= × × Ä - Ä -ç ÷¶è ø
= …

¶
= × Ä -

¶

W h
h h

W W h h
h

W h
h

Training RNNs

22

Gradient issues
• Reasons for Vanishing gradients

• Due to &1 − ℎ!"#$%& ∈ [0,1 , .⊗%'(
(1 − 𝐡!"#$%& can be extremely small;

• 𝐖) * is not initialized properly with a small value, 𝐖) * #
can be very small

• Reasons for exploding gradients

• 𝐖) * is not initialized properly with a large value, 𝐖) * #
can be very large

Training RNNs

23

Tricks for avoiding gradient issues

• Using truncated BPTT to mitigate the gradient exploding problem

• Using appropriate weight initializations

• Using alternative RNN models such as GRUs and LSTMs

Training RNNs

24

Training bi-directional RNNs
Two different aspects from training BiRNNs and vanilla RNNs:

• Both 𝐡! and 𝐡(receive back-propagated gradients

• Each)𝐱+ (𝑖 ∈ [1, … , 𝑛] receives back-propagated gradients from both 𝐡𝒊 and

𝐡+. These two gradients should be summed as the final gradient.

Training RNNs

An example of Bi-directional RNNs

25

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

26

Long-Short-Term Memory

Long-short-term memory (LSTM):
• An RNN variant which allows better SGD training by better control of

back-propagation gradients over a large number of steps;

• Splitting the hidden state of each recurrent step into a state vector and

a memory cell vector.

• Using gates for fine-grained control of ''remembered'' and

''forgotten'' information by each feature

27

Given an input 𝐗!:#, the state vector 𝐇!:# and cell vectors (representing

a recurrent memory in LSTM) 𝐂!:#, with randomly initialized model

parameters 𝐡𝟎 (initial state) and 𝒄𝟎(cell vectors),

How to calculate the standard LSTM step

𝒉&, 𝒄& = LSTM_STEP 𝐱&, 𝒉&+!, 𝒄&+! ?

Long-Short-Term Memory

28

29

1

1

1

1

1

()
()
tanh()

()
tanh()

ih ix i
t t t

fh fx f
t t t

gh gx g
t t t

t t t t t
oh ox o

t t t

t t t

s

s

s

-

-

-

-

-

= + +

= + +

= + +
= Ä + Ä

= + +
= Ä

i W h W x b
f W h W x b
g W h W x b
c i g f c
o W h W x b
h o c

𝐖#$,𝐖#% , 𝐛# ,𝐖&$,𝐖&% , 𝐛& ,𝐖'$,𝐖'% , 𝐛',𝐖($,𝐖(% and 𝐛(are model parameters;

𝐠!: nonlinear transformation for better representing the input 𝐱!;

𝐢! , 𝐟! , 𝐨!: input gate, forget gate and output gate, respectively;

𝜎 , ⊗ : the sigmoid function and the element-wise multiplication (i.e., Hadamard

product) operation, respectively.

A standard LSTM recurrent step can be calculated as follows:

Long-Short-Term Memory

30
Figure credit: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Input Gates

Forget Gates Output Gates

Long term memory
Short term memory

Long-Short-Term Memory

31

Gates in LSTM
• LSTM recurrent steps are characterized by the use of gates through

the Hadamard product operation

• A gate vector takes a real value between 0 and 1

• The element-wise product of a gate vector and a feature vector

filters each feature with a decay

Long-Short-Term Memory

32

Gates in LSTM
• Input gate (𝐢&): controls the reading process of the current input

• Forget gate (𝐟&): keeps the history in memory

• Output gate (𝐨&): decides the mapping from a memory cell to a

hidden vector

Long-Short-Term Memory

33

Bi-directional extension
The bi-directional LSTMs (BiLSTM) can be defined as follows:

1 2

1 2

1 1 2 2

() [; ; ;],

() [; ; ;],

() [; ; ;],

n

n

n n

LSTM

LSTM

BiLSTM

= = …

= = …

= Å = Å Å … Å

H X h h h

H X h h h

X H H h h h h h h

    

    

       

𝐿𝑆𝑇𝑀: left-to-right LSTMs
𝐿𝑆𝑇𝑀: right-to-left LSTMs

Long-Short-Term Memory

34

Gated recurrent units

Gated recurrent Units (GRU)

• Compared to RNNs, LSTMs give better results, but much slower

due to increased model parameters and computation steps;

• Gated recurrent units (GRU) simplify LSTM by removing the cell

structure, and using only two gates (a reset gate and a forget gate)

• Better deal with back-propagation gradients with a faster speed

35

Gated recurrent units

Given an input sequence: 𝐗#& = 𝐱#, 𝐱(, . . . , 𝐱& , a standard GRU cell 𝐡& =

GRU_STEP(𝐱&, 𝐡&+!) is given by

@𝐫! = 𝜎(𝐖)$𝐡!*+ +𝐖)%𝐱! + 𝐛)

@𝐳! = 𝜎(𝐖,$𝐡!*+ +𝐖,%𝐱! + 𝐛,

@𝐠! = tanh(𝐖$$(𝐫! ⊗𝐡!*+) +𝐖$%𝐱! + 𝐛$

𝐡! = (𝟏. 𝟎 − 𝐳!) ⊗ 𝐡!*+ + 𝐳! ⊗𝐠! ,

𝐖-$, 𝐖-% , 𝐛- , 𝐖.$, 𝐖.% , 𝐛. , 𝐖$$, 𝐖$% and 𝐛$: model parameters
𝐫!: the reset gate
𝐳!: the forget gate

36

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

37

Stacked LSTMs

• Recurrent neural networks can be stacked to multiple layers to

improve the representation power

• Each layer in stacked LSTMS feeds its output vectors as input to the

next layer in the bottom-up direction.

An Example of Stacked BiLSTMs

38

0 0

1 0 2 1 1
1 2

1 0 2 1 1
1 2

1

,

(), (), , ()

(), (), , ()

 [

l l
l

l l
l

ll l

LSTM LSTM LSTM

LSTM LSTM LSTM

-

-

= =

= = … =

= = … =

= Å = Å

H X H X

H H H H H H

H H H H H H

H H H h h

 

        

        

   
1 2 2; ; ;]
l l l l l

n nÅ … Åh h h h
   

𝐡#
%: the output hidden vector of the t-th word at the j-th layer

𝐇%: the output hidden vectors of the whole sequence at the j-th layer

𝐇: the final output vectors

𝐿𝑆𝑇𝑀% and 𝐿𝑆𝑇𝑀% : left-to-right LSTM and the right-to-left LSTM at the j-th layer, respectively

A stacking method can be calculated as follows:

Stacked LSTMs

39

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

40

Neural Attention

Neural Attention
• An alternative method to pooling operations for aggregating a set of

vectors

• A weighted sum of vectors in a sequence with regard to certain targets

• Can be used to find a single vector representation of a sentence

41

Given a target vector 𝐪(𝐪 ∈ ℝ-) and a list of context vectors 𝐇 = 𝐡(, 𝐡&, ⋯ , 𝐡! (𝐡+ ∈

ℝ-, d is the dimension of 𝐪), the function can be defined as:

1

1

(,) ([1,...,])
exp()

exp()

i i

i
i N

i
i
n

i i
i

s score i n
s

s
a

a

=

=

= Î

=

= ´

å

å

q h

c h

(softmax normalization)

(weighted sum),

𝐜: output of)𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐪, 𝐇 , a weighted sum of the content vectors, which can

be used as a context-aware feature representation of 𝐪

𝑠#: a relevance score between 𝐪 and 𝐡#
𝛼#: normalised relevance scores based on 𝑠#

]𝛼 = [𝛼+, 𝛼-, ⋯ , 𝛼. : a probability distribution over the content vectors

Neural Attention

42

Score function
Dot-product attention
• Defines the score between the target vector 𝐪 and the context vector 𝐡

• No model parameters

• measures the similarity between 𝐪 and 𝐡

𝑠𝑐𝑜𝑟𝑒(𝐪, 𝐡) = 𝐪]𝐡

Neural Attention

43

Score function
Scaled dot-product attention

Scales the dot-product attention score by (
-

, where d is the dimension of 𝐪 and 𝐡

𝑠𝑐𝑜𝑟𝑒(𝐪, 𝐡) =
𝐪]𝐡
𝑑

Neural Attention

44

Score function
General attention
A parameter matrix 𝐖 (𝐖 ∈ ℝ-!×-") to capture the interaction between each

element in 𝐪 (𝐪 ∈ ℝ-!) and each element in 𝐡 (𝐡 ∈ ℝ-")

𝑠𝑐𝑜𝑟𝑒(𝐪, 𝐡) = 𝐪]𝐖𝐡

Neural Attention

45

Score function
Additive attention
• First performs a linear combination of 𝐪 and 𝐡

• then applies a feedforward neural layer before squeezing the resulting vector

using a parameter vector 𝐯

𝑠𝑐𝑜𝑟𝑒(𝐪, 𝐡) = 𝐯]tanh(𝐖(𝐪⊕ 𝐡) + 𝐛),

𝐯, 𝐖, 𝐛 are model parameters

⊕ denotes concatenation

Neural Attention

46

Score function
• For dot-production attention and scaled dot-production attention, 𝐪 and

𝐡must have the same dimension size;

• For general attention and additive attention, 𝐪 and 𝐡 can have

different dimension size

Neural Attention

47

• Loss over 𝒄 given

• Calculate loss over 𝒒, 𝒉^ (𝑖 ∈ [1, … , 𝑛])

Back-propagation Rules

48

Correlation with gating functions
• Given a set of hidden vectors 𝐇!:# = 𝐡!, 𝐡$, . . . , 𝐡# and a target vector 𝐪,

a set of gate vectors for aggregating 𝐇!:# can be calculated as

• Offering more fine-grained combination of input vectors, but is also

computationally more expensive

1 2

1

(, ,...)

,

q h
i i

i n
n

i i
i

softmax

=

= +

=

= Äå

s W q W h
g s s s

c g h

(element-wise softmax)

𝐖/ and 𝐖$ are model parameters

⊗ denotes element-wise multiplication

Neural Attention

49

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

50

Query-Key-Value Attention

• Similar to database queries, contexts in neural attention also contain a

set of key-value pairs;

• Context vectors can be regarded as associated memories in this case

• Given a target query, comparing the query vector with the key vectors

and return the related value vectors

51

(softmax normalization)

(weighted sum),
1

1

(,) ([1,...,])
exp()

exp()

i i

i
i N

i
i
n

i i
i

s score i n
s

s
a

a

=

=

= Î

=

=

å

å

q k

c v

• Suppose: the query vector 𝐪, the key vector]𝐊!:# = [𝐤!; 𝐤$; ⋯ ; 𝐤#
and the value vector]𝐕!:# = [𝐯!; 𝐯$; ⋯ ; 𝐯#

• For each key vector 𝐤^, the corresponding value vector 𝐯^, the

query-key-value attention function)𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐪, 𝐊, 𝐕 is

𝐜: output of)𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐪, 𝐇 , a weighted sum of the value vectors with the. i-th weight

score being 𝑠+, 𝑠+: attention score between the query vector 𝐪 and the i-th key vector 𝐤+

Query-Key-Value Attention

52

Query-key-value attention with a sequence of queries

• Deal with sequence of queries: call call the attention function

separately for each query, and then concatenate the results

• Given the sequence of queries]𝐐!:_ = [𝐪!; 𝐪$; ⋯ ; 𝐪_ , key vectors K

and value vectors V, the attention function)𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐, 𝐊, 𝐕 is

1 1

2 2

1 2

(, ,)
(, ,)

(, ,)
(, ,) [; ; ;],

l l

l

attention
attention

attention
attention

=
=

=

=

c q K V
c q K V

c q K V
Q K V c c c





𝐜^ ∈ ℝ`: the attentive result of the i-th query

Query-Key-Value Attention

53

Parallel computations

Using matrix multiplications to enable parallel computations for

reducing computational expenses

1

(,)
()

score
softmax

=
=

S Q K
A S

𝐂 = 𝐕𝐀*: final result, which is taken as 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐, 𝐊, 𝐕) ∈ ℝ/×-. The i-th row represents the

attentive result vector of 𝐪+
𝐒 ∈ ℝ/×!: a score matrix, 𝑠 +][% (also donated as 𝑠+%) is the relevance score of 𝐪+ and 𝐤%

)𝑠𝑜𝑓𝑡𝑚𝑎𝑥((𝐒 : applying the softmax function to normalize each column in 𝐒

𝐀 ∈ ℝ/×!: attention score matrix

Query-Key-Value Attention

54

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

55

Self-Attention-Network

Self-Attention-Network (SAN)
• Self-Attention-Network (SAN) aggregates a set of vectors, which can be

useful to design an attention network structure

• Given 𝐗#:& = 𝐱#, 𝐱(, . . . , 𝐱&, the output vector

)

𝐇#:& =

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐗#:&, 𝐗#:&, 𝐗#:& can be calculated as

𝐡/: an attentive representation of 𝐗#:& by using 𝒙𝒊 as a query

)𝐇!:# = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐗!:#, 𝐗!:#, 𝐗!:#

56

Two advantages for SANs
• Allowing the representation 𝐡^ in each layer to take into

consideration all 𝐱^s globally

• The time complexity of RNNs is)𝑂(𝑛# , while the time complexity

of SANs is)𝑂(𝑛

• Transfer (Chapter 16) is a more advanced SAN framework.

Self-Attention-Network

57

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

58

Representing Trees

Representing Trees

• Trees structures are useful for representing syntax, semantics, etc

• Tree LSTMs
• constructed by extending a sequence LSTM model

• recurrent time steps can be taken in the bottom-up direction and receive

information from its subnodes recurrently

• top tree node can contain features over the entire tree structure

• multiple predecessors in a tree LSTM model

59

Figures of Tree LSTMs

Sequence (a) and tree LSTMs (b and c).

(a) sequence LSTM

(b) Child-sum tree LSTM (c) Binary tree LSTM

Representing Trees

60

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

61

Child-Sum Tree LSTM

• Representing arbitrary trees through turning multiple child nodes

into one by summing up their hidden states

• A bottom-up recurrent computation of hidden states, and the input is

rearranged hierarchically from the root

• The values of hidden nodes are calculated layer by layer

Word order Hierarchy

62

Notations
𝑿𝟏:𝒏 = 𝐱!, 𝐱$, . . . , 𝐱#: embedding vectors of an input sentence

)𝐡& (𝑡 ∈ [1, . . . , 𝑛] : hidden state vectors of the input

𝐱&^ : word embedding vector indexed in the bottom-up order, t is the

layer index from the bottom, and i is the index within the layer

𝐡&^ : hidden state vector indexed in the bottom-up order

Child-Sum Tree LSTM

63

64

Notations
Given an embedding node 𝐱&^ ,
• its predecessor node hidden state can be represented as

𝐡&+!
)b(&,^,! , 𝐡&+!

)b(&,^,$, . . . , 𝐡&+!
@b(&,^,c#
$

• its corresponding cell states can be represented as

𝐜&+!
)b(&,^,! , 𝐜&+!

)b(&,^,$, . . . , 𝐜&+!
@b(&,^,c#
$

where, 𝑚&
^ : the number of child nodes of 𝐱&^

)𝑐(𝑡, 𝑖, 𝑗 : the index of the 𝑗-th child node of 𝐱&^ among

nodes on the 𝑡 − 1 -th layer

Child-Sum Tree LSTM

𝐶 2,2,1 = 1

65

𝐡&+!^ =]
de!

c#
$

𝐡&+!
)b(&,^,d

Hidden states of all its child nodes

𝐡&+!
)b(&,^,d , 𝑗 ∈ [1, . . . , 𝑚&

^] are summed up into a single hidden

state 𝐡&+!^ as

Child-Sum Tree LSTM

66

Gates for Child-Sum Tree LSTM

• Given 𝐡&+!^ and 𝐱&^ , the input gate 𝐢&^ and output gate 𝐨&^ are

calculated as

𝐖^*, 𝐖^,, 𝐛^, 𝐖f*, 𝐖f, and 𝐛f are model parameters

• For a cell state 𝒄&+!
b(&,^,d)(𝑗 ∈ [1, . . . , 𝑚&

^]), the forget gates are calculated

as

6𝐢&^ = 𝜎(𝐖^*𝐡&+!^ +𝐖^,𝐱&^ + 𝐛^

𝐨&^ = 𝜎(𝐖f*𝐡&+!^ +𝐖f,𝐱&^ + 𝐛f),

𝐟&
^,d = 𝜎(𝐖g*𝐡&+!

)b(&,^,d +𝐖g,𝐱&^ + 𝐛g),

𝐖g*, 𝐖g, and 𝐛g are model parameters

Child-Sum Tree LSTM

Calculating the cell states 𝐜& and the hidden state 𝐡&^

• The cell state 𝐜& is calculated as

𝐖h*, 𝐖h, and 𝐛h : model parameters

𝐠&^ : a new cell state with the input 𝐱&^ being considered

⊗: Hadamard product

• 𝐡&^ can be calculated as

67

1

, (, ,)
1

1

tanh()

,
i
t

i gh i gx i g
t t t

m
i i i j c t i j
t t t t t

j

-

-
=

= + +

= Ä + Äå

g W h W x b

c i g f c

6𝐡&^ = 𝐨&^ ⊗ tanh(𝐜&^

Child-Sum Tree LSTM

68

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

69

Binary Tree LSTM

• Binary tree: each node has at most two child nodes

• The hidden state of each child node to be considered separately

• More fine-grained in computing gate and cell values

• Goal: calculating a hidden vector 𝐡!/ for each node in a tree LSTM. (𝑡

is the bottom-up layer index and 𝑖 is the in-layer node index)

70

Notations
𝑥!#: word embedding vector indexed in the bottom-up order, 𝑡 is the layer index

from the bottom, and 𝑖 is the index within the layer

𝐡!# : hidden state vector indexed in the bottom-up order

𝐜!# : cell state vector indexed in the bottom-up order

𝐡#"(
)3(#,+,6 , 𝐡#"(

)3(#,+,7 : hidden state values of left and right child of 𝑥#+

𝐜#"(
)3(#,+,6 , 𝐜#"(

)3(#,+,7 : cell values of left and right child of 𝑥#+

)𝑏(𝑡, 𝑖, 𝐿 ,)𝑏(𝑡, 𝑖, 𝑅 : the index of the left and right child of 𝑥#+ among nodes on the

𝑡 − 1 -th layer

Binary Tree LSTM

71

For binary tree LSTM, recurrent LSTM steps follow sequential LSTM cell

computation, but differentiating the two predecessor states of each node

The input gate 𝐢#+ and two forget gates 𝐟#
+,𝑳 and 𝐟#

+,𝑹 are computed as follows:

(, ,) (, ,) (, ,) (, ,)
1 1 1 1

, (, ,) (, ,) (, ,) (, ,)
1 1 1 1

, (, ,) (,
1 1

()

()

(

l l l l l

r r

i ih b t i L ih b t i R ic b t i L ic b t i R i
t L t R t L t R t

f h f h f c f c fi L b t i L b t i R b t i L b t i R
t L t R t L t R t

f h f hi R b t i L b t
t L t R t

s

s

s

- - - -

- - - -

- -

= + + + +

= + + + +

= +

i W h W h W c W c b

f W h W h W c W c b

f W h W h ,) (, ,) (, ,)
1 1)r r rf c f c fi R b t i L b t i R

L t R t- -+ + +W c W c b

𝐖0
#$,𝐖1

#$,𝐖0
#2 ,𝐖1

#2 , 𝐛# ,𝐖0
&!$,𝐖1

&!$,𝐖0
&!2 ,𝐖1

&!2 , 𝐛&! ,𝐖0
&"$,𝐖1

&"$,𝐖0
&"2 ,𝐖1

&"2 , 𝐛&!

and 𝐛&" are model parameters

Binary Tree LSTM

72

(, ,) (, ,)
1 1

, (, ,) , (, ,)
1 1

(, ,) (, ,)
1 1

tanh()

()
tanh(),

i gh b t i L gh b t i R g
t L t R t
i i i i R b t i R i L b t i L
t t t t t t t
i oh b t i L oh b t i R oc i o
t L t R t t
i i
t t t

s

- -

- -

- -

= + +

= Ä + Ä + Ä

= + + +

= Ä

g W h W h b
c i g f c f c
o W h W h W c b
h o c

𝐖*
1$,𝐖2

1$, 𝐛1,𝐖*
3$,𝐖2

3$,𝐖34 and 𝐛3 are model parameters

The cell state and hidden state values are computed as follows:

Binary Tree LSTM

73

Tree LSTM Features and Sequence
LSTM Features

• Difference between Tree LSTM and Sequence LSTM

• Sequence LSTM: Integrating local word-level features into hidden

representations that reflect a sentence-level context

• Tree LSTM: Control the process of information integration,

whereby syntactically correlated words are integrated before

unrelated words, stronger in capturing long-range syntactic

dependencies
• The representation power of tree LSTMs can be further combined with that

of sequence LSTMs by stacking a tree LSTM on top of a sequence LSTM

74

Tree LSTMs and DAG LSTM

• Directed Acyclic graph (DAG)

• Extension of tree LSTM into Lattice LSTM,

• More than one predecessors and successors.

75

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

76

Examples of general graph structures
• Semantic graph

• Cyclic structure, which causes difficulty in finding a natural order of

nodes in a graph

• Hard to define recurrent time steps for calculating hidden states

Cyclic graph

Representing Graphs

77

To calculate a hidden state for representing a node in a large

graph-level context:
• graph nodes can be made independent of a node order

• each node can collect information from its neighbors recurrently

Recurrent graph state update

Representing Graphs

78

To calculate a hidden state for representing a node in a large graph-level context:

• time steps can be taken in a direction that is orthogonal to the graph edges

• View as a sequence of ''snapshots‘’ of the graph structure

• Each ''snapshot‘’ represents a recurrent time step

• At each time step, the hidden state is updated by collecting information

from the hidden states of itself and its neighbors in the previous time step.

• Viewed as a message passing time step, where each node collects

information from its neighbors as a message for updating its own state.

Representing Graphs

79

Notations

𝑉 𝐸 : the graph

c𝑉 = {𝑣!, 𝑣$, . . . 𝑣 j : nodes in the graph

c𝐸 = {𝑒!, 𝑒$, . . . , 𝑒 k : edges in the graph

6𝑒^ = (𝑣^!, 𝑙^, 𝑣^$: the connection of two nodes 𝑣^! and 𝑣^$ with an

edge labelled 𝑙^ (𝑖 ∈ 1, . . . , 𝐸)

For directed graphs, we assume that 𝑒^ points from 𝑣^! to 𝑣^$

Representing Graphs

80

Graph neural network (GNN)
• Assigns an initial hidden state vector 𝐡%^ for each 𝑣^ (𝑖 ∈

1, . . . , 𝑉), and then recurrently calculates 𝐡!^ , 𝐡$^ , . . . , 𝐡]^ as the

hidden state for representing 𝑣^
• 𝐡&^ represents the hidden state for node 𝑖 at step 𝑡

• The total number of time steps 𝑇 can be decided empirically

according to a task that uses the representation

Representing Graphs

81

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

82

Graph Recurrent Neural network (GRN)

Graph recurrent neural network (GRN)
• Calculating the hidden states 𝐡!^ , 𝐡$^ , . . . , 𝐡]^ for a node 𝑣^ in a

recurrent process

• Given an aggregated previous state 𝐦&+!
^ and a current input 𝐱^,

the hidden state 𝐡&^(𝑡 ∈ 1,… , 𝑇) is calculated as:

𝐦&+!
^ : the aggregation vector of previous hidden states of 𝑣^

𝐱^: the aggregation vector of the input representation over the neighbors of 𝑣^

1STM TEPL _S (,),i i i
t t-=h m x

83

Graph recurrent neural network (GRN)
• The aggregated state 𝐦&

^ : message received by 𝑣^ at time 𝑡

• For undirected graphs, or disregarding edge directions in directed

graphs, given neighbours of node 𝑣^ as)𝛺(𝑖 , 𝐦&+!
^ can be represented as:

𝐦&+!
^ =]

)l∈n(^

𝐡&+!l

Graph Recurrent Neural network (GRN)

84

Graph recurrent neural network (GRN)
x^ represents the inherent natures (integrating both node and edge

information) of the graph node 𝑣^ can be defined as:

𝐱^ =]
)l∈n(^

(𝐖,(𝑒𝑚𝑏(𝑣^) ⊕ 𝑒𝑚𝑏o(𝑙(𝑖, 𝑘)) ⊕ 𝑒𝑚𝑏(𝑣l)) + 𝐛,),

𝑒𝑚𝑏: the embedding for a node

𝑒𝑚𝑏:: the embedding for an edge

)𝑙(𝑖, 𝑘 : edge label between 𝑣+ and 𝑣;
𝐖< and 𝐛<: model parameters

Graph Recurrent Neural network (GRN)

85

Differentiating edge directions
For directed graphs, neighbor nodes can be grouped by the

edge direction for more fine-grained representation.

𝐦&+!
^ for 𝑣^ can be calculated as:

1 1
()

1 1
()

1 1 1

i k
t t

k i

i k
t t

k i

i i i
t t t

­

¯

­
- -

ÎW

¯
- -

ÎW

­ ¯
- - -

=

=

= Å

å

å

m h

m h

m m m

)𝛺↑(𝑖 and)𝛺↓(𝑖 : all incoming and outcoming neighbours, respectively
𝐦#"(
+↑ and 𝐦#"(

+↓ : previous states from neighbors with incoming and outgoing edges
𝐦#"(
+ : the concatenation of 𝐦#"(

+↑ and𝐦#"(
+↓

Graph Recurrent Neural network (GRN)

86

Differentiating edge directions
𝐱&^ of directed graphs can be defined by combining

information in both edge directions

()

()

() (,) ()

() (,) ()

,

((()))

((()))

i
t k ix x

k i

i
t k ix x

k i

i i i
t t t

emb v emb l i k emb v

emb v emb l i k emb v
­

¯

­
­ ­

ÎW

¯
¯ ¯

ÎW

­ ¯

= Å Å +

= Å Å +

= Å

å

å

x W b

x W b

x x x

𝐖<↑, 𝐛<↑,𝐖<↓ and 𝐛<↓: model parameters

)𝑙(𝑘, 𝑖 : the label of edge from 𝑣; to 𝑣+

Graph Recurrent Neural network (GRN)

87

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

88

Graph Convolutional Neural network (GCN)

Graph convolutional neural network (GCN)
• GCN uses a convolution function to calculate 𝐡&^ based on 𝐡&+!^

• Using the same equations with GRN for calculating 𝐦&
^ and 𝐱&^

• For updating node states, GCN uses the convolutional function

as follows:

𝐡&^ = 𝜎(𝐖c𝐦&+!
^ +𝐖,𝐱&^ + 𝐛),

𝐖c,𝐖, and 𝐛 are model parameters

89

Different edge labels

A variant of GCN collects information separately from different

neighbors, using different weights for edges with different labels.

Donating edge label between 𝑣^ and 𝑣l as)𝑙(𝑖, 𝑘 and edge

direction between 𝑣^ and 𝑣l as)𝑑𝑖𝑟(𝑖, 𝑘 , a GCN can be redefined as

(,), (,) 1 (,), (,) (,), (,)
()

() (,) () ,

(())

(())

i m k x k
t l i k dir i k t l i k dir i k t l i k dir i k

k i

k
t k iemb v emb e i k emb v

s -
ÎW

= + +

= Å Å

åh W h W x b

x

𝐖)/(+,;),-+?(+,;
@ : |𝐿|×2 sets of model parameters to replace a single 𝐖@. Similar extension to

𝐖< and 𝐛 . 𝐿 : the set of edge labels

Graph Convolutional Neural network (GCN)

90

Adding Gates
Another variant of GCN applies gates to control the amount of

information passed from each 𝐡l(𝑘 ∈ 𝛺 𝑖) to 𝐡^

The value of a gate 𝐠&
^,l can be defined as:

𝐖)/(+,;),-+?(+,;
A and 𝐛)/(+,;),-+?(+,;

A are |𝐿|×2 sets of model parameters

The gate can be used for updating node states as follows

𝐠&
^,l = 𝜎(𝐡&+!l 𝐖)_(^,l),`^p(^,l

h + 𝐛)_(^,l),`^p(^,l
h),

,
(,), (,) 1 (,), (,) (,), (,)

()
(())i i k m k x k

t t l i k dir i k t l i k dir i k t l i k dir i k
k i

s -
ÎW

= Ä + +åh g W h W x b

Graph Convolutional Neural network (GCN)

91

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

92

Graph Attention Neural network (GAT)

Using attention functions for aggregating information from

neighbor states at each recurrent step

𝐡&^ for 𝑣& at step 𝑡 is defined as follows:

𝐡&^ =]
)l∈n(^

𝛼^l 𝐡&+!l

𝛼+;: normalising a set of attention scores, each calculated using the
previous hidden states 𝐡#"(+ and 𝐡#"(; as follows:

𝐖: a model parameter

1 1

()

()
exp() ,
exp()

()i k
ik t t

ik
ik

ik
k i

s
s
s

s

a

- -

¢
¢ÎW

= Å

=
å

W h h

93

Graph Attention Neural network (GAT)

• GATs also have variants

• Graph Transformer is built on Transformer.

94

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

95

Feature Aggregation

• GNNs calculate a hidden state for each node in a graph structure

• Adding one aggregation layer (pooling or attention aggregation)

on top of the final 𝒉^ (𝑖 ∈ [1, . . . , |𝑉|]) to obtain a single vector

representation of the whole graph

96

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

97

Analysing Representation
The neural representation vector h

Dynamically computed low-dimensional dense

• Pros

• contain automatic combinations of input features

• capturing syntactic and semantic information

• Cons

• not easily interpretable

Two indirect ways to analyse learned representation vectors

• Visualisation

• Probing tasks

• Ablation

98

Visualisation
• Projecting hidden representations into a two-dimensional figure to

better understand their correlations

• Preserving the distance correlation between vectors to gain knowledge

about the characteristics of the representation vectors

• A useful tool: t-distributed stochastic neighbor embedding (t-SNE)

Analysing Representation

99

t-distributed stochastic neighbor embedding (t-SNE)
A non-linear dimensionality reduction technique that aims to preserve the

distance correlation between vectors in the original high-dimensional vector

space and then projected to two-dimensional space.

An example of t-SNE visualisation of positive and negative documents.

Analysing Representation

100

Probing tasks

• Auxiliary tasks that predict the features that we expect a learned

representation to capture.

• Using a set of additional output layers.

• Procedures

• given a set of documents with gold-standard outputs

• run the representation model and dump the vector representation

• train a very simple classification model, and treat the probed task as

the output

• the more accurate the trained simple model is, the more confident we

are that the representation vectors contain relevant information

Analysing Representation

101

• Remove a vector from a set of hidden states.

• Check output.

Ablation

102

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

103

More on Neural Network Training

• Optimisation technique: A key to successful representation

learning especially for neural network training

• Simple methods such as SGD may not give the best optimisation

towards a training objective because the neural network

structure becomes increasingly deep and complex

• This section will list more alternatives for optimisation

104

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

105

AdaGrad
• AdaGrad: an optimisation algorithm that adaptively sets the learning

rate for each parameter based on the gradient

• Notations
• 𝛩: model parameters

• 𝐠: the corresponding set of gradients

• For each parameter)𝜃/ ∈ 𝛩(𝑖 ∈ [1, … , 𝛩] , AdaGrad maintains an

accumulated squared gradient 𝑠𝑔^ from the start of training to estimate

the per-parameter learning rate.

• The learning rate 𝜂^ for 𝜃^ is inversely proportional to the root of 𝑠𝑔+

106

• The update rules of AdaGrad can be written as:

𝐿: loss

𝜖: a hyper-parameter for numerical stability

𝑡: the time step number in parameter update

𝑠𝑔#,+: the sum of squares of the gradient with respect to 𝜃+

• Common hyper-parameter settings:
• 𝜖 = 1𝑒"B

• 𝜂 = 0.01

More on Neural Network Training

107

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

108

RMSProp

• Problems for AdaGrad

• the learning rate decreases monotonically and aggressively, which

can lead to early and suboptimal convergence

• sensitive to initial gradients

• RMSProp solves the problems of AdaGrad by

• using attention to a limited history window instead of all history

gradients

• the initial gradient does not greatly affect the learning rate of

future time steps

109

RMSProp

1

1
2 2 2

1

2

1

()

| | | | (1)

| | | |

| |

t
t

t

t t t

t t

t t t
t

L

RMS

RMS

r r

h

-

-

-

-

¶ Q
=

¶Q

= + -

= +

Q =Q -

g

g g g

g g

g
g

E E

E Ú

• The update rules of RMSProp can be written as:

𝔼|𝐠(|!: the dynamic average of the squares of the gradients. 𝜌: a hyper-parameter

controlling the percentage of the previous average and the current gradient

• The remaining updating rules are the same as AdaGrad

• Common hyper-parameter settings:
• 𝜌 = 0.9 𝜂 = 0.001

110

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

111

AdaDelta

• dealing with the learning rate decay problem of AdaGrad, with an

exponentially running average of the square of history gradients

• replacing manual selection of the initial learning rate 𝜂 with an

estimation of 𝛥𝛩 at the t-th timestep

• The key idea is to make the parameter update 𝛥𝛩 proportional to the

parameter 𝛩 itself

112

AdaDelta
• The update rules of AdaDelta can be written as:

𝛥𝛩: the parameter change
|𝔼|𝛥𝛩(: the exponential running averaging of the squares of the parameter change

• 𝑅𝑀𝑆|𝛥𝛩|& remains unkown before calculating 𝛥𝛩

• Therefore, AdaDelta approximate 𝑅𝑀𝑆|𝛥𝛩|# by assuming)𝑅𝑀𝑆(⋅ function is locally

smooth

113

AdaDelta

• The update rules for 𝛥𝛩& can be written as:

𝑅𝑀𝑆|𝛥𝛩|&+!: an acceleration term, summarising the history parameter

update within a recent window

• Common hyper-parameter settings:
• 𝜌: 0.9
• 𝜖: 1𝑒+q

𝛥𝛩& = −
𝑅𝑀𝑆|𝛥𝛩|&+!
𝑅𝑀𝑆|𝐠|&

𝐠&

114

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

115

Adam

• integrates the ideas of momentum SGD and RMSProp by maintaining the

exponentially running averages of both the first order moment and the

second order moment

• moment: a mathematical tool for quantitative description of the shape of

the gradient function

• first order moment: records the moving average of history gradients

• second order moment: accumulates the moving average of history

squared gradients

116

Adam
• The two gradient estimations are defined as:

• 𝐯: a first order moment estimation, acting as the momentum

• |𝔼|𝐠$: a second order moment estimation, representing the running

expectation of the squares of the gradients as in RMSProp.

• 𝛽! and 𝛽$: hyper-parameters, which are both recommended to be set to

close 1.

1

1

1 1 1
2 2 2

2 1 2

()

(1)
| | | | (1)

t
t

t

t t t

t t t

L

b b

b b

-

-

-

-

¶ Q
=

¶Q

= + -

= + -

g

v v g
g g gE E

117

Adam
• The initial values of 𝐯 and 𝐠 are both zeroes

• At time step 𝑡, 𝐯k (a weighted sum of gradients within time step 𝑡)

is given by

1 1 0 1 1 1 1

2 1 1 1 2 1 1 1 1 2

1 1 1 2

1 2
1 1 1 1 2

(1) (1)
(1) (1) (1)

(1)()

(1)()t t
t t

b b b
b b b b b

b b

b b b- -

= + - = -
= + - = - + -
= - +

= - + + +

v v g g
v v g g g

g g

v g g g




118

Adam
• 𝑏k , which is the sum of the weights of the gradients

𝐠$, 𝐠%, . . . , 𝐠k , is given by

1 2
1 1 1 1 1

1

1
1 1

1 1

1

(1)(1) (1)

1 ,

t
t t t i

t
i

t t
t i t i

i i
t

b b b b b b

b b

b

- - -

=

- + -

= =

= - + + + = -

= -

= -

å

å å



• 𝑏& is not equal to 1, which indicates that Adam is biased towards

zero parameter update in the beginning steps

119

Adam

�𝐯& =
𝐯&

1 − 𝛽!&

�𝔼|𝐠$|& =
𝔼|𝐠$|&
1 − 𝛽$&

𝛩& = 𝛩&+! −
𝜂

�𝔼|𝐠$|& + 𝜖
�𝐯&

To remedy these biases, Adam uses bias-corrected estimations

The bias-corrected estimations for the second order moment is

The final update rule for Adam applied to 𝜃k is

Common hyper-parameter settings:

• 𝜖:1𝑒+r

• 𝜂:1𝑒+s

120

Contents
• 14.1 Recurrent neural network

• 14.1.1 Vanilla RNNs

• 14.1.2 Training RNNs

• 14.1.3 LSTM and GRU

• 14.1.4 Stacked LSTMs

• 14.2 Neural attention

• 14.2.1 Query-Key-Value attention

• 14.2.2 Self-Attention-Network (SAN)

• 14.3 Representing trees

• 14.3.1 Child-sum tree LSTM

• 14.3.2 Binary tree LSTM

• 14.3.3 Tree LSTM features and

sequence LSTM features

• 14.4 Representing graphs

• 14.4.1 Graph Recurrent Neural Network (GRN)

• 14.4.2 Graph Convolutional Neural Network (GCN)

• 14.4.3 Graph Attention Neural Network

• 14.4.4 Feature aggregation

• 14.5 Analyzing representation

• 14.6 More on neural network training

• 14.6.1 AdaGrad

• 14.6.2 RMSProp

• 14.6.3 AdaDelta

• 14.6.4 Adam

• 14.6.5 Choosing a training method

121

Choosing a Training Method

• The performance of these adaptive gradient optimisers can vary with

different datasets and hyper-parameter choices

• The choice of the optimiser itself can be viewed as a hyper-parameter

• Adam

• the most popular choice of the adaptive gradient optimisers

• converges much faster than SGD with momentum

• SGD

• obtain good or even better performances with careful learning

rate decay compared to Adam

Summary

122

• Recurrent Neural Network and LSTM

• Attention and Self Attention network

• Tree LSTMs

• Graph Neural Network (GCN, GRN, GAT)

• Explainability of neural representations

• SGD extensions.

