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Chapter 16

Working With Two Texts
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End-to-End Architectures

• Using neural models, hand-crafted features can be replaced by 
Dense Representation.

• A pipelined approach with sub-systems can be replaced by a 
simple end-to-end system.

Classical  
NLP

Language
detection

Tokenization

PoS tagging

Stopword removal

…

Feature extraction

Modeling

Inference

…

Classification

NER

Translation

…

Pre-processing Modeling Output
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• Using neural models, hand-crafted features can be replaced by 
Dense Representation.

• A pipelined approach with sub-systems can be replaced by a 
simple end-to-end system.

Neural 
models

Preprocessing

Classification

NER

Translation…

Embeddings Hidden layers Output

End-to-End Architectures
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End-to-End Architectures

• Take an example of Machine Translation:

Bilingual 
text

Target 
text

Translation
model

Language
model

Source text

Decoder

Target text

Encoder 
Neural Network 

e.g. RNN

Encoder 
Neural Network 

e.g. RNN

Target textSource text

Classic
SMT

Neural
MT
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End-to-End Architectures

• Sequence-to-sequence is useful for more than just MT

• Many NLP tasks can be phrased as sequence-to-sequence:
• Machine translation(source text → target text)
• Summarization (long text → short text)
• Dialogue (previous utterances → next utterance)
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• Encoder for learning a neural input representation. 
• Decoder for constructing the output sequence.

RNNs/SANs RNNs/SANs

Source 
language

Target
language

For Machine Translation:

Encoder-Decoder Structure

encoder decoder
-0.2
-0.1
0.2
0.3

-0.3
1.1
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• Encoder for learning a neural input representation. 
• Decoder for constructing the output sequence.

RNNs/SANs RNNs/SANs

User
utterance

System
response

For Dialogue System:

encoder decoder
-0.2
-0.1
0.2
0.3

-0.3
1.1

Encoder-Decoder Structure
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Model 1: Seq2seq using LSTM

• Encoding and Decoding with LSTM

Given an input sentence:  𝑋!:# = 𝑥!, 𝑥$, … , 𝑥#

Generating an output sentence: 𝑌!:% = 𝑦!, 𝑦$, … , 𝑦%

LSTM

𝑥!

LSTM

𝑥"

LSTM

< 𝑠 >···

··· LSTM

𝑦!

LSTM

𝑦"

LSTM

𝑦#···

···

𝑦! 𝑦" 𝑦$ </𝑠 >
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• Encoder: Bi-directional LSTM

To decoder

LSTM

𝑥%

LSTM

𝑥&

LSTM

𝑥'

LSTM LSTM LSTM

ℎ% ℎ& ℎ'

Model 1: Seq2seq using LSTM
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• Encoder: some tips

• A useful practice to add pseudo start < 𝑠 > and end tokens 
</𝑠 > to the beginning and end of the input.

• It is useful to use ∑&'!# 𝑒𝑚𝑏(𝑥&) as the start hidden states 
�⃗�()#* and ←𝐡#+!

)#*
in both directions instead of zeros.

Model 1: Seq2seq using LSTM
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• Decoder: output of encoder is used as an initial state ℎ(,)*

Encoder

Predicting the first word 𝑦!:

LSTM

< 𝑆 >

LSTM

𝑦!

LSTM

y%

ℎ! ℎ" ℎ#

𝐿𝑖𝑛𝑒𝑎𝑟

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑝(𝑦&|𝑦', 𝑦(, … , 𝑦&)', 𝑋)

]𝑃(𝑦!|𝑋!:#) = 𝐩![𝑦!

Model 1: Seq2seq using LSTM
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• Decoder: each subsequent step 𝑖

Encoder
LSTM

< 𝑆 >

LSTM

𝑦!

LSTM

y%

ℎ! ℎ" ℎ#

𝐿𝑖𝑛𝑒𝑎𝑟

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑝(𝑦&|𝑦', 𝑦(, … , 𝑦&)', 𝑋)

Model 1: Seq2seq using LSTM



17

• Decoder: each subsequent step 𝑖

Encoder
LSTM

< 𝑆 >

LSTM

𝑦!

LSTM

y%

ℎ! ℎ" ℎ#

𝐿𝑖𝑛𝑒𝑎𝑟

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑝(𝑦&|𝑦', 𝑦(, … , 𝑦&)', 𝑋)

A greedy local Greedy search:
𝑦! = argmax"!"𝑃(𝑦!"|𝑋#:%, 𝑌#:!&#)

Model 1: Seq2seq using LSTM
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• Training: 

Given an input sentence: 𝑋!:# = 𝑥!, 𝑥$, … , 𝑥#

Generating an output sentence: 𝑌!:% = 𝑦!, 𝑦$, … , 𝑦%

𝐿 = −>
&'!

-

>
.'!

%!

log (𝑃(𝑦.&|𝑋&, 𝑌&:./!& ))

Model 1: Seq2seq using LSTM
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• Target vocabulary

• OOV: Vocabulary, in the scale of 100 is very large. So highly 
infrequent words are not considered to make the model smaller. 

• <UNK>: adding a special token <UNK> to address OOV 
problem, so that gradients can be computed.

• Disallowing the <UNK>  from being generated may lead to 
inconsistency between training and testing. So some post-
processing can be conducted.

Model 1: Seq2seq using LSTM
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LSTM

𝑥%

LSTM

𝑥&

LSTM

𝑥'

LSTM LSTM LSTM

ℎ% ℎ& ℎ'

LSTM

< 𝑆 >

LSTM

𝑦%

LSTM

y)

ℎ% ℎ& ℎ'

𝐿𝑖𝑛𝑒𝑎𝑟

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑝(𝑦&|𝑦!, 𝑦", … , 𝑦&'!, 𝑋)

• Lack of model 1
• Model 1 gives competitive results for MT and summarization, however, 

source representation vector 𝐡)#* is the only connection point.
• RNNs face challenges in maintaining long-range dependencies 

between target and source words, when sentences are too long.

Model 2: LSTM using attention
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• Intuition beyond model 1

• Keep the source at hand in each generating step.
• Consider the hidden states for each source word simultaneously 

as the representation of whole source sentence rather than using 
only the last hidden states.

Model 2: LSTM using attention
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• Construct a context vector using attention mechanism

Model 2: LSTM using attention
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• Construct a context vector using attention mechanism

𝑎*𝑎+𝑎,

Model 2: LSTM using attention
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• Construct a context vector using attention mechanism

Introducing 𝑐! into LSTM gates 
respectively:

𝑎*𝑎+𝑎,

Model 2: LSTM using attention
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• Generation using attention mechanism as model 1

𝑎*𝑎+𝑎,

Model 2: LSTM using attention
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• Denote the probability of an output sequence as 
model 1:

𝑃 𝑌!:& 𝑋!:# = 𝑃 𝑦! 𝑋!:# 𝑃 𝑦$ 𝑦!, 𝑋!:# …𝑃 𝑦& 𝑦!:&/!, 𝑋!:#

• Search for high probability, tracking top K on each 
step.

• Beam search is not guaranteed to find optimal
solution.

• But much more efficient than exhaustive search.

• Beam search:

Model 2: LSTM using attention
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• Beam search : example (beam size: K= 2)

<S>

Calculate probability
of next word

Model 2: LSTM using attention
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<S>

he

I

1.1 = P( he|<START> ) + 0.6

0.9 = P( I|<START>)

Take top K words 
and compute scores

• Beam search : example (beam size: K= 2)

.

.

.

Model 2: LSTM using attention
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love

hit

like

get

he

I

0.6

0.9

For each of the K hypotheses, find
top K next words and calculate scores

1.5 = P( love|<START> he) + 0.6

1.1 = P( hit|<START> he) + 0.6

1.8 = P( like|<START> I) + 0.9

1.4 = P( like|<START> I) + 0.9

<S>

• Beam search : example (beam size: K= 2)

.

.

.

Model 2: LSTM using attention
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love

hit

like

get

he

I

0.6

0.9

1.8

1.4

1.5

1.1

Just keep K words with highest scores

<S>

• Beam search : example (beam size: K= 2)

Model 2: LSTM using attention
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love

hit

like

get

NLP

study

to

play

he

I

0.6

0.9

1.8

1.4

1.5

1.1
1.7 = P( study|<START> he love) + 1.1

1.9 = P( NLP|<START> he love) + 1.5

2.6 = P( to|<START> I like) + 1.8

2.7 = P( play|<START> I like) + 1.8

<S>

• Beam search : example (beam size: K= 2)

For each of the K hypotheses, find
top K next words and calculate scores

.

.

.

Model 2: LSTM using attention
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love

hit

like

get

NLP

study

to

play

he

I

0.6

0.9

1.8

1.4

1.5

1.1
1.7

1.9

2.7

2.6<S>

• Beam search : example (beam size: K= 2)

Just keep K words with highest 
scores

Model 2: LSTM using attention
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love

hit

like

get

NLP

study

to

play

go

learn

with

on

he

I

0.6

0.9

1.8

1.4

1.5

1.1
1.7

1.9

2.7

2.6

3.0

3.4

3.1

3.5

4.0

<S>

• Beam search : example (beam size: K= 2)

For each of the K hypotheses, find
top K next words and calculate scores

Model 2: LSTM using attention
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love

hit

like

get

NLP

study

to

play

go

learn

with

on

he

I

0.6

0.9

1.8

1.4

1.5

1.1
1.7

1.9

2.7

2.6

3.0

3.4

3.1

3.5

4.0

<S>

• Beam search : example (beam size: K= 2)

Just keep K words with highest scores

Model 2: LSTM using attention
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love

hit

like

get

NLP

study

to

play

go

learn

with

on

to

NLP

a

me

he

I

0.6

0.9

1.8

1.4

1.5

1.1
1.7

1.9

2.7

2.6

3.0

3.4

3.1

3.5

3.8

4.0

4.4

4.2

<S>

• Beam search : example (beam size: K= 2)

For each of the K hypotheses, find
top K next words and calculate scores

Model 2: LSTM using attention
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love

hit

like

get

NLP

study

to

play

go

learn

with

on

to

NLP

a

me

he

I

0.6

0.9

1.8

1.4

1.5

1.1
1.7

1.9

2.7

2.6

3.0

3.4

3.1

3.5

3.8

4.0

4.4

4.2

<S>

• Beam search : example (beam size: K= 2)

This is the top-scoring 
hypothesis!

Model 2: LSTM using attention
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love

hit

like

get

NLP

study

to

play

go

learn

with

on

to

NLP

a

me

he

I

0.6

0.9

1.8

1.4

1.5

1.1
1.7

1.9

2.7

2.6

3.0

3.4

3.1

3.5

3.8

4.0

4.4

4.2

Backtrack to obtain the full 
hypothesis

<S>

• Beam search : example (beam size: K= 2)

Model 2: LSTM using attention
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Model 2: LSTM using attention

• Beam search: tips

• Usually we continue beam search until:
• We reach time step T (where T is some pre-defined cutoff), or
• We have at least n completed hypotheses (where n is pre-defined cutoff)

• Applying pruning to each time step: 
• Enumeration of all possible candidates results in a 𝑚𝐾|𝑉| time 

complexity.
• It is efficient to conduct pruning, keeping only the top 2K candidates.
• A type value of K in practice is 6.
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• For machine translation, some technological terminologies 
can be better left.

• I like to learn NLP.  à 我喜欢学习NLP。

• For dialogue, part of user utterance can be directly 
included in a system response.

• Input:   Hello , my name is XXX.
• Response:  Nice to meet you, XXX.

41

Model 3: Copying from the source

• Copying is useful

copy



42

• Copying: intuition

• Basic idea: allow a copying probability to be interpolated with a 
vocabulary generation probability when generating each word.

• Source vocabulary 𝑈 (set of words in source sentence) and target 
vocabulary 𝑉à 𝑈 ∪ 𝑉)

• The integration of copy probabilities into generation 
probabilities

• Generation probability:

• How to integrate?

Model 3: Copying from the source
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• Copying: How to integrate copy probabilities ?

• Pointer network:
• Reuse the attention weights  as a distribution over source 

vocabulary 𝑈.

• Copying network:
• Take a dedicated neural network layer for calculating the 

copy score.

Model 3: Copying from the source
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• Take attention score 𝛼&. as the distribution of a pointer to a 
source word:

• The pointers to the same word in the source vocabulary 𝑈
are then aggregated:

• Finally, for the generation of 𝑦&, the generation probability 
and the copy probability are linearly interpolated: 

• Pointer network

]𝑠𝑐𝑜𝑟𝑒'(𝑦! = 𝑥() = 𝛼!(, 𝑘 ∈ [1, … , 𝑛

𝑠𝑐𝑜𝑟𝑒!(𝑦" = 𝑢#) = ;
$:&)' (*

𝛼"$ , 𝑢# ∈ 𝑈, 𝑗 ∈ [1, … , |𝑈|]

𝑠𝑐𝑜𝑟𝑒(𝑦!) = 𝜆𝑠𝑐𝑜𝑟𝑒)(𝑦!) + (1 − 𝜆)𝑠𝑐𝑜𝑟𝑒'(𝑦!),

Model 3: Copying from the source
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• A copying network calculates 𝑠𝑐𝑜𝑟𝑒* directly, by taking the 
current decoding state 𝒉&/!,)* and the encoder hidden state of a 
source word 𝒉.)#* as input:

• The probability of generating a target word 𝑦& is calculated by the 
sum of a generate probability and a copy probability:

• Copying network

𝑠𝑐𝑜𝑟𝑒'(𝑦! = 𝑢() = A
*:+#,-$

tanh (𝐡*.%'𝐖')𝐡!&#/.'

G𝑃(𝑦!|𝑋#:%, 𝑌#:!&#) = 𝑃)(𝑦!|𝑋#:%, 𝑌#:!&#) + 𝑃'(𝑦!|𝑋#:%, 𝑌#:!&#

Model 3: Copying from the source
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• Copying network

• 𝑃F and 𝑃* represents normalized versions of 𝑠𝑐𝑜𝑟𝑒F and 
𝑠𝑐𝑜𝑟𝑒*, which are a part of a distribution 𝑃 of the 
generation and copy:

where

Model 3: Copying from the source
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Subword Embedding
• Dealing with OOV words

• The prefix and the suffix can give us hints about the meaning of 
a word. Inspired of this, we can make use of subwords to enrich 
vocabulary instead of a <UNK> tokens in model 1, 2 and 3.

• First consideration is morphological segmentation, however, it 
can be ambiguous and not able to cover all words.

• Byte-pair encoding (BPE) is a useful algorithm:
Most frequent byte pair à a new byte.
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• Original BPE

• Suppose to compress the following text using BPE:
𝒂𝒂𝒃𝒂𝒂𝒅𝒂𝒂𝒃

• The byte-pair 𝒂𝒂 is the most frequent pair, which can be 
replaced by an unused code 𝒁:

𝒁𝒃𝒁𝒅𝒁𝒃

• Then repeat the process with replace 𝒁𝒃 by 𝒀:
𝒀𝒁𝒅𝒀

• 𝒀𝒁𝒅𝒀 is the final representation, since there are no pairs 
that occur more than once.

Subword Embedding
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• Expanding the vocabulary using BPE

• Start with a vocabulary of characters
• Most frequent n-gram pairs à a new n-gram

Corpus Vocabulary

b, e, d, t, r, a, s, w2   b e d
2   b e t t e r 
3   e a s t 
4   w e s t Start with all characters in vocabulary

Subword Embedding
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Add a pair (s, t) with frequency 7

Corpus Vocabulary

b, e, d, t, r, a, s, w, st2   b e d
2   b e t t e r 
3   e a st
4   w e st

Subword Embedding

• Expanding the vocabulary using BPE

• Start with a vocabulary of characters
• Most frequent n-gram pairs à a new n-gram
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Add a pair (b, e) with frequency 4

Corpus Vocabulary

b, e, d, t, r, a, s, w, st, be2   be d
2  be t t e r 
3   e a st
4   w e st

Subword Embedding

• Expanding the vocabulary using BPE

• Start with a vocabulary of characters
• Most frequent n-gram pairs à a new n-gram
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Final vocablary

Corpus Vocabulary

b, e, d, t, r, a, s, w, st, be2   be d
2  be t t e r 
3   e a st
4   w e st

Subword Embedding

• Expanding the vocabulary using BPE

• Start with a vocabulary of characters
• Most frequent n-gram pairs à a new n-gram
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A new OOV word: best
à be@@   +   st

Corpus Vocabulary

b, e, d, t, r, a, s, w, st, be2   be d
2  be t t e r 
3   e a st
4   w e st

Subword Embedding

• Expanding the vocabulary using BPE

• Start with a vocabulary of characters
• Most frequent n-gram pairs à a new n-gram
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• Byte Pair Encoding: tips

• Have a target vocabulary size and stop when you reach it.

• Segmentation is only within words identified by some 
prior tokenizer.

• Automatically decide vocabulary for system.

Subword Embedding
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Seq2seq using Attention Network

• Transformer

An extension to SAN in chapter 13.
It has been shown a competitive alternative to RNNs
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• Encoder: Self-attention

Input of a self-attention layer:

Output of a self-attention layer:

Q = K = V

𝛼01

𝑥1 𝑥0 𝑥2

I                love            NLP

𝒗' 𝒗( 𝒗)

+
x x

𝛼03

FFN 

𝒉' 𝒉( 𝒉)

FFN FFN 

Self-attention layer

Seq2seq using Attention Network
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• Encoder: Multi-head self-attention

Scaled Dot-product attentionScaled Dot-product attention

K Q V K Q V K Q V

Scaled Dot-product attention

Concat

Seq2seq using Attention Network
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• Encoder: Layer normalization

Seq2seq using Attention Network
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• Encoder: Feed-forward sub-layer

G𝐇))+ = 𝑅𝑒𝐿𝑈(𝐖))+𝐇*+ + 𝐛))+

𝐇)) = 𝐖))𝐇))+ + 𝐛))

Seq2seq using Attention Network
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• Encoder: output

G𝐇,(- = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐇)) + 𝐇*+

Seq2seq using Attention Network
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• Encoder: input encoding and position embedding

𝐱" = 𝑒𝑚𝑏(𝑥") + 𝐕"
.

G𝐕"
.[2𝑗] = sin( ⁄𝑖 10000/ ⁄# 1,

G𝐕"
.[2𝑗 + 1] = cos( ⁄𝑖 10000/ ⁄# 1,

Seq2seq using Attention Network
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• Obtain the next target word

• MLP layer

• Target to source attention

• Target self-attention

• Embedding & positional encoding

• Decoder: similar to encoder 

encoder

𝐨* = 𝐖+,-𝐡*.'+,-

)𝐩* = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐨*

1𝐇+//- = 𝑅𝑒𝐿𝑈(𝐖+//-𝐇-01 + 𝐛+//-

𝐇+// = 𝐖+//𝐇+//- + 𝐛+//-

1𝐇+,- = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐇+// + 𝐇-01

1𝐇- = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝐇+01, 𝐇,2-, 𝐇,2-

1𝐇-01 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐇- + 𝐇+01

1𝐇+13 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝐘':*.', 𝐘':*.', 𝐘':*.'
1𝐇+01 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐘':*.', 𝐇+13

]𝐘':*.' = [𝑒𝑚𝑏5(𝑦'), 𝑒𝑚𝑏5(𝑦(), … , 𝑒𝑚𝑏5(𝑦*.')

Seq2seq using Attention Network
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• Training: 

Given a set of input-output sentence pairs:

Object function:

𝐿 = −;
"'2

3

;
#'2

+-

log (𝐩#[𝑦#"]) =;
"'2

3

;
#'2

+-

log (𝑃(𝑦#"|𝑋" , 𝑌":#42" )

Seq2seq using Attention Network
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• Why self attention: 

𝑛 = sequence length     𝑑 = depth 𝑘 = kernel size

Self-attention
Recurrent
Convolutional

𝑂 𝑛/ g 𝑑
𝑂 𝑛 g 𝑑/
𝑂 𝑘 g 𝑛 g 𝑑/

𝑂 1
𝑂 𝑛
𝑂 1

𝑂 1
𝑂 𝑛

𝑂 𝑙𝑜𝑔$(𝑛)

Layer Type        Complexity per Layer      Sequential        Maximum Path Length 
Operations 

Seq2seq using Attention Network



67

Contents
• 16.1 Sequence to sequence models

• 16.1.1 Model 1: Seq2seq using LSTM

• 16.1.2 Model 2: Adding more source features using target-to-

source attention

• 16.1.3 Model 3: Copying form the source

• 16.1.4 Subword Embedding

• 16.1.5 Seq2seq using Attention Network

• 16.2 Text Matching Models

• 16.2.1 Matching Two Texts in Parallel

• 16.2.2 Searching for a match

• 16.2.3 Memory network



68

Text Matching Models

• Text matching: whether two pieces of text semantically match each other.
Paraphrase detection, text entailment detection…

• Searching for a match: find a section in a given piece of text that matches 
the meaning of another piece of text.

Machine reading comprehension…
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Text Matching

• Text matching:

How many people live in Melbourne

What’s the population of Melbourne Probability
Matching
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How many people live in Melbourne What’s the population of 
Melbourne

• Siamese network: 
• Apply identical encoders to represent both sentences.
• Parameters are shared between both encoders.

Text Matching
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• Siamese network:

𝑊#:%6
# = 𝑤##, 𝑤0#, … , 𝑤%6

#

𝑊#:%7
0 = 𝑤#0, 𝑤00, … , 𝑤%7

0
K𝑒𝑚𝑏(𝑊#) = [𝑒𝑚𝑏(𝑤##); 𝑒𝑚𝑏(𝑤0#); … ; 𝑒𝑚𝑏(𝑤%6

# )
K𝑒𝑚𝑏(𝑊0) = [𝑒𝑚𝑏(𝑤#0); 𝑒𝑚𝑏(𝑤00); … ; 𝑒𝑚𝑏(𝑤%7

0 )

Text Matching
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• Siamese network:

𝑊#:%6
# = 𝑤##, 𝑤0#, … , 𝑤%6

#

𝑊#:%7
0 = 𝑤#0, 𝑤00, … , 𝑤%7

0
K𝑒𝑚𝑏(𝑊#) = [𝑒𝑚𝑏(𝑤##); 𝑒𝑚𝑏(𝑤0#); … ; 𝑒𝑚𝑏(𝑤%6

# )
K𝑒𝑚𝑏(𝑊0) = [𝑒𝑚𝑏(𝑤#0); 𝑒𝑚𝑏(𝑤00); … ; 𝑒𝑚𝑏(𝑤%7

0 )

)𝐇# = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑒𝑚𝑏(𝑊#)
)𝐇0 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑒𝑚𝑏(𝑊0)

Text Matching
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• Siamese network:

𝑊#:%6
# = 𝑤##, 𝑤0#, … , 𝑤%6

#

𝑊#:%7
0 = 𝑤#0, 𝑤00, … , 𝑤%7

0
K𝑒𝑚𝑏(𝑊#) = [𝑒𝑚𝑏(𝑤##); 𝑒𝑚𝑏(𝑤0#); … ; 𝑒𝑚𝑏(𝑤%6

# )
K𝑒𝑚𝑏(𝑊0) = [𝑒𝑚𝑏(𝑤#0); 𝑒𝑚𝑏(𝑤00); … ; 𝑒𝑚𝑏(𝑤%7

0 )

Text Matching
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• Siamese network:

𝑊#:%6
# = 𝑤##, 𝑤0#, … , 𝑤%6

#

𝑊#:%7
0 = 𝑤#0, 𝑤00, … , 𝑤%7

0
K𝑒𝑚𝑏(𝑊#) = [𝑒𝑚𝑏(𝑤##); 𝑒𝑚𝑏(𝑤0#); … ; 𝑒𝑚𝑏(𝑤%6

# )
K𝑒𝑚𝑏(𝑊0) = [𝑒𝑚𝑏(𝑤#0); 𝑒𝑚𝑏(𝑤00); … ; 𝑒𝑚𝑏(𝑤%7

0 )

)𝑃(𝑚𝑎𝑡𝑐ℎ(𝑊#,𝑊0)) = 𝜎(𝐨
)𝐨 = 𝑀𝐿𝑃(𝐡#⊕𝐡0

Text Matching
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• Training:

Given a set of labeled training data 

The training objective function can be to minimize the 
negative log-likelihood loss function

𝐿 = −;
"'2

3

( 𝑦"log𝑃(𝑚𝑎𝑡𝑐ℎ(𝑊"
2,𝑊"

/)) + (1 − 𝑦")log(1 − 𝑃(𝑚𝑎𝑡𝑐ℎ(𝑊"
2,𝑊"

/))))

Text Matching
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• Attention matching network:

Compared to Siamese network:

Text Matching
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Same to the Siamese network
o𝑒𝑚𝑏(𝑊2) = [𝑒𝑚𝑏(𝑤22); 𝑒𝑚𝑏(𝑤/2); … ; 𝑒𝑚𝑏(𝑤5.

2 )
o𝑒𝑚𝑏(𝑊/) = [𝑒𝑚𝑏(𝑤2/); 𝑒𝑚𝑏(𝑤//); … ; 𝑒𝑚𝑏(𝑤5/

/ )

Text Matching

• Attention matching network:



79

o𝑒𝑚𝑏(𝑊2) = [𝑒𝑚𝑏(𝑤22); 𝑒𝑚𝑏(𝑤/2); … ; 𝑒𝑚𝑏(𝑤5.
2 )
o𝑒𝑚𝑏(𝑊/) = [𝑒𝑚𝑏(𝑤2/); 𝑒𝑚𝑏(𝑤//); … ; 𝑒𝑚𝑏(𝑤5/

/ )

)𝐇# = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑒𝑚𝑏(𝑊#)
)𝐇0 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑒𝑚𝑏(𝑊0)

• Attention matching network:

Text Matching



80

G𝑠"# = 𝐕6𝑡𝑎𝑛ℎ(𝐖2𝐡"2 +𝐖/𝐡#/ + 𝐛

𝛼"# =
Gexp(𝑠"#
G∑$'2

5/ exp (𝑠"$

w𝐡"2 =;
#'2

5/

𝛼"#

• Attention matching network:

Text Matching
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Additive attention
Denoted:

G\𝐇# = 𝑠𝑒𝑛𝑡_𝑎𝑡𝑡(𝐇#, 𝐇0

G\𝐇0 = 𝑠𝑒𝑛𝑡_𝑎𝑡𝑡(𝐇0, 𝐇#

• Attention matching network:

Text Matching
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Concatenate the original 
vectors and the matching 
vectors:

𝑎𝑣𝑒:  Bitwise average pooling
𝑚𝑎𝑥: Max pooling
⊕: Cancatenate

)𝐔 = 𝑎𝑣𝑔(𝐐2) ⊕𝑚𝑎𝑥(𝐐2) ⊕ 𝑎𝑣𝑔(𝐐/) ⊕𝑚𝑎𝑥(𝐐/

o𝐐2 = [𝐡22⊕ w𝐡22; 𝐡/2 ⊕ w𝐡/2; … ; 𝐡5.
2 ⊕ w𝐡5.

2

o𝐐/ = [𝐡2/⊕ w𝐡2/; 𝐡//⊕ w𝐡//; … ; 𝐡5/
/ ⊕ w𝐡5/

/

• Attention matching network:

Text Matching
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Final multilayer perceptron 
for matching probability:

𝑎𝑣𝑒:  Bitwise average pooling
𝑚𝑎𝑥: Max pooling
⊕: Cancatenate

)𝐔 = 𝑎𝑣𝑔(𝐐2) ⊕𝑚𝑎𝑥(𝐐2) ⊕ 𝑎𝑣𝑔(𝐐/) ⊕𝑚𝑎𝑥(𝐐/

o𝐐2 = [𝐡22⊕ w𝐡22; 𝐡/2 ⊕ w𝐡/2; … ; 𝐡5.
2 ⊕ w𝐡5.

2

o𝐐/ = [𝐡2/⊕ w𝐡2/; 𝐡//⊕ w𝐡//; … ; 𝐡5/
/ ⊕ w𝐡5/

/

)𝑃(𝑚𝑎𝑡𝑐ℎ(𝑊2,𝑊/)) = 𝜎(𝑀𝐿𝑃(𝐔)

Text Matching

• Attention matching network:
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Text Matching

• Bidirectional attention matching network:

• Similarly, Bi-direction attention (co-attention) can be used to extract 
the mutual information between 𝐻# and 𝐻0.

• Attention weight matrix:

• The bi-directional attention output 𝑼

G~𝐇2 = 𝐷𝑢𝑝(𝐇2, 𝑛/
G~𝐇/ = 𝐷𝑢𝑝(𝐇/, 𝑛2

G𝐒 = 𝑎𝑣𝑔2(𝐕(~𝐇2⊕ ( ~𝐇/)𝑇/,8⊕ (~𝐇2⊗ ( ~𝐇/)𝑇/,8))

)𝛼2 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥/(𝐒
G𝛼/ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥/(𝐒𝐓
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Searching for a Match

• Network structure searching for a match:
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Given a context sequence 𝑊#

and a query 𝑊0, the task is to find an 
answer span 

that matches 𝑊0.

Searching for a Match

• Network structure searching for a match:
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Encoding with Bi-LSTM

)𝐇2 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑒𝑚𝑏(𝑊2)
)𝐇/ = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑒𝑚𝑏(𝑊/)

Searching for a Match

• Network structure searching for a match:
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G𝑠"# = 𝐕6𝑡𝑎𝑛ℎ(𝐖2𝐡"2 +𝐖/𝐡#/ + 𝐛

𝛂"# =
Gexp(𝑠"#
G∑$'2

5/ exp (𝑠"$

w𝐡"2 =;
#'2

5/

𝛼"# 𝐡#/

Additive attention for matching:

Searching for a Match

• Network structure searching for a match:
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Final representation:

o𝐔2 = [𝐡22⊕ w𝐡22; 𝐡/2 ⊕ w𝐡/2; … ; 𝐡5.
2 ⊕ w𝐡5.

2

Searching for a Match

• Network structure searching for a match:
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Start Predicting:

G𝐌: = 𝐵𝑖𝐿𝑆𝑇𝑀(𝐔2

o𝐐: = [𝐮22⊕𝐦2
:; 𝐮/2 ⊕𝐦/

:; … ; 𝐮5.
2 ⊕𝐦5.

:

�𝐬:[𝑖] = (𝐯0)6𝐐": , 𝑖 ∈ [1, … , 𝑛2
G𝐩: = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐬:

Searching for a Match

• Network structure searching for a match:
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End Predicting:

o𝐐= = [𝐮22⊕𝐦2
=; 𝐮/2 ⊕𝐦/

=; … ; 𝐮5.
2 ⊕𝐦5.

=

o𝑠=[𝑖] = (𝐯1)6𝐪"= , 𝑖 ∈ [1, … , 𝑛2
)𝐩= = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐬=

Searching for a Match

• Network structure searching for a match:
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Training:

𝐿 = −
1
𝑁
;
"

3

( 𝑙𝑜𝑔(𝐩:[𝑏"]) + 𝑙𝑜𝑔(𝐩=[𝑒"]))

Searching for a Match

• Network structure searching for a match:
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Memory Network

• In many case, the correct answer to a question cannot be directly read off 
one evidence, but multi-stage inference is required instead. 

• For instance, suppose that the document is 

one needs to find out the most relevant fact:
“Joe left the milk” 

Then, one needs to consider the second relevant fact, 
“Joe travelled to the office”, 

before finding a to describe the answer “office”.

• Previous methods are weak in some case:

Joe travelled to the office. 
Joe left the milk. 
Joe went to the bathroom.
Q: Where is the milk now?
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• Why memory network:

• Neural networks have hard times to capture long-range 
dependencies, even LSTMs.

• Multi-stage inference is necessary in machine reading 
comprehension.

• Memory networks try to overcome these problem using 
an external memory.

Memory Network
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• Intuition of memory network:

• A neural network: LSTM, SAN, …

A Neural network

embedding

Bi-LSTM

Bi-LSTM

Fully connected

Fully connected

Memory Network
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• Intuition of memory network:

• A neural network: LSTM, SAN, …
• An external memory

A Neural network

embedding

Bi-LSTM

Bi-LSTM

Fully connected

Fully connected

Memory Network
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• Intuition of memory network:

• A neural network: LSTM, SAN, …
• An external memory where the neural network can write and read to

A Neural network

embedding

Bi-LSTM

Bi-LSTM

Fully connected

Fully connected

writing

reading

Memory Network



100

• Memory network structure: a memory and 4 components

• Input feature map(I): encodes the input into a hidden representations, e.g. 
bag of words

• Generalization(G): stores the input into memory
• Output feature map(O): read the most relevant memory slots
• Response(R): given the info. read from the memory, return the output.

Memory Network
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• End2end memory network for QA: an example

Joe travelled to the office. 
Joe left the milk. 
Joe went to the bathroom.
Q: Where is the milk now?

Memory Network
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Raw text sentence is transformed in its vector representation e.g. BOW.

𝑙. is position encoding to  capture the order of the words.

• Component I: Input Representation

Joe travelled to the office. 
Joe left the milk. 
Joe went to the bathroom.
Q: Where is the milk now?

𝐦" =;
#'2

5-

𝑒𝑚𝑏𝐄2 𝑤#"

G𝑙*! = (1 − ⁄𝑗 𝑛!) − ( ⁄𝑖 𝑑1)(1 − 2 ⁄𝑗 𝑛!

Memory Network
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• The sentences are then written to the memory sequentially, via 
the component G:

• Notice that the memory is fixed in this approach once is 
written, it is not changed neither during learning nor during 
testing.

• Component G:

Joe travelled to the office. 
Joe left the milk. 
Joe went to the bathroom.

M

𝐦" =;
#'2

5-

𝑙#" ⋅ 𝑒𝑚𝑏𝐄
2(𝑤#")

o𝐌 = [𝐦2; … ;𝐦52

Memory Network
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• Similar, query representation as follow:

𝑙H is position encoding to  capture the order of the words.

"𝑙I
J = (1 − ⁄𝑖 𝑛J) − ( ⁄1 𝑑K)(1 − 2 ⁄𝑖 𝑛J

• Query text Representation

Joe travelled to the office. 
Joe left the milk. 
Joe went to the bathroom.
Q: Where is the milk now?

𝐮 =;
"'2

53

𝑙"
? ⋅ 𝑒𝑚𝑏𝐄3(𝑊"

?)𝑎

Memory Network
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• The most relevant memory blocks are found by calculating 𝑝
over memory cells 𝑚I:

• Component O: matching

Joe travelled to the office. 
Joe left the milk. 
Joe went to the bathroom.

M

Q: Where is the milk now?

U

𝑠" = 𝐮6𝐦"

𝐩[𝑖] =
)exp(𝑠"
G∑$'2

52 exp (𝑠$

Memory Network
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• Then, we calculate a context vector 𝑜 in accordance with 𝑝.

• Component O: output

Joe travelled to the office. 
Joe left the milk. 
Joe went to the bathroom.

M

Q: Where is the milk now?

U

Finally, the output 
evidence vector:

𝐜" =;
#'2

5-

𝑙#" ⋅ 𝑒𝑚𝑏𝐄
2+(𝑤#")

𝐨 =;
"'2

53

𝐩 [𝑖]𝐜"

Memory Network
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• 𝒂[𝑖] represents the probability of the 𝑖 th word from the vocabulary 
being the answer word with the evidence vector 𝐨.

• But, we can not get the answer directly. More steps can be necessary.

• Component R: response with component O

Joe travelled to the office. 
Joe left the milk. 
Joe went to the bathroom.

M

Q: Where is the milk now?
U

)𝐪 = 𝐖(𝐨 + 𝐮
)h𝐚 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐪

Memory Network
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• We can leverage the existing evidence vector 𝐨 for finding a new 
distribution 𝒑 over memory cells, which in turn results in a new 
context representation of 𝐨. 

• This is typically called a hop in inference.

• Component R: response with multi-hop

Joe travelled to the office. 
Joe left the milk. 
Joe went to the bathroom.

M

Q: Where is the milk now?

U

𝐮(2# = 𝐮( + 𝐨(
)𝐪3 = 𝐖(𝐨3 + 𝐮3

Memory Network
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• Given a set of training data: 𝐷 = {(𝐷!4,𝑊!
5, 𝑎!)}|!,#6

• Training

Joe travelled to the office. 
Joe left the milk. 
Joe went to the bathroom.

M

Q: Where is the milk now?

U

Standard cross-entropy loss 
with the inference above:

𝐿 = −;
"

3

log �𝐚" 𝑎"

Memory Network


