Natural
Language
Processing
Westlake University

Yue Zhang

& A K 4

np NLP

Chapter 16

Working With Two Texts

Contents ne NLP

16.1 Sequence to sequence models

16.1.1 Model 1: Seq2seq using LSTM

* 16.1.2 Model 2: Adding more source features using target-to-
source attention

« 16.1.3 Model 3: Copying form the source

* 16.1.4 Subword Embedding

* 16.1.5 Seg2seq using Attention Network

16.2 Text Matching Models

« 16.2.1 Matching Two Texts in Parallel

« 16.2.2 Searching for a match

* 16.2.3 Memory network

Contents ne NLP

16.1 Sequence to sequence models

End-to-End Architectures ne NLP

 Using neural models, hand-crafted features can be replaced by
Dense Representation.

* A pipelined approach with sub-systems can be replaced by a
simple end-to-end system.

Classical
NLP o
Tokenization Feature extraction Classification
— Language PoS tagging Modeling NER
— detection Stopword removal Inference Translation

End-to-End Architectures P \WestlakeNLP

 Using neural models, hand-crafted features can be replaced by
Dense Representation.

* A pipelined approach with sub-systems can be replaced by a
simple end-to-end system.

i ; Output
Neural Embeqddmgs Hidden layers P

models

F————=============1 s smsmsmm=m===-=

|

v
@ugssaaoxdmd)

v

DDDDDDDDD

!
NER)E
>

End-to-End Architectures

 Take an example of Machine Translation:

Classic
SMT

Neural
MT

Bilingual
text

Target
text

Encoder
Neural Network
e.g. RNN

Source text

Translation
model

Language
model

Encoder
Neural Network
e.g. RNN

Target text

Source text

Decoder

Target text

NLP

End-to-End Architectures ne NLP

e Sequence-to-sequence is useful for more than just MT

e Many NLP tasks can be phrased as sequence-to-sequence:
« Machine translation(source text — target text)
« Summarization (long text — short text)
« Dialogue (previous utterances — next utterance)

Encoder-Decoder Structure ne

* Encoder for learning a neural input representation.
* Decoder for constructing the output sequence.

For Machine Translation:

decoder #Target

Source
=) encoder language

language

i=l=i=1=
—WWNERLDN

RNNs/SANs RNNs/SANs

NLP

Encoder-Decoder Structure ne

* Encoder for learning a neural input representation.
* Decoder for constructing the output sequence.

For Dialogue System:

decoder #SyStem

User
=) cncoder
response

utterance

i=l=i=1=
—WWNERLDN

RNNs/SANs RNNs/SANs

NLP

Contents ne NLP

16.1.1 Model 1: Seq2seq using LSTM

11

Model 1: Seq2seq using LSTM np NLP

* Encoding and Decoding with LSTM

Given an input sentence: Xi., = X1, X3, ..., Xn

LSTM »| LSTM —» - —» LSTM »| LSTM » LSTM —» - —» LSTM

Generating an output sentence: Y1.;, = ¥1,¥2, ..+, Ym

12

Model 1: Seq2seq using LSTM ne

 Encoder: Bi-directional LSTM

hy

h
/TM

GFM

N

LSTM

LSTM

LSTM

LSTM

ﬁf”’c = LSTM (ﬁfﬁi, emb(xi))
(ﬁfnc = LSTM (ifﬁ, emb(a:z-))
henC — [ﬁenC. %f'fl/C]

n o

‘ To decoder

NLP

Model 1: Seq2seq using LSTM ne

* Encoder: some tips

* A useful practice to add pseudo start < s > and end tokens
</s > to the beginning and end of the input.

o Itis useful to use)=, emb(x;) as the start hidden states
cenc

Bgnc and h,,,; in both directions instead of zeros.

NLP

Model 1: Seq2seq using LSTM ne

* Decoder: output of encoder is used as an initial state hgec

Encoder —»

Softmax

p(yilylr YZ; ---;}’i—l.X)

hy)_y _.{
A
STM }—} —]
A
Y1 }—’ —p]

Ym

\

h{e = LSTM (hi*, emb((s)))
Predicting the first word y;:

01 = Wh
p1 = softmaz(o;) p; € RV

P(y11X1:n) = p1lyil

NLP

Model 1: Seq2seq using LSTM np NLP

 Decoder: each subsequent step i

Softmax P(}’i|}’1:YZ'---'3’i—1;X)
' hée¢ = LSTM (h%S, emb' (y;_1)
Linear ’L p— Z-l) y’[,—l
= Wh{
hq > h, L~ cocoonens — Ry, OZ p— ’L
Encoder— ¥ Y x
. = softmax(0;
LSTM || LSTM = eevene —| 1sT™ |) f ('L)

Model 1: Seq2seq using LSTM np NLP

 Decoder: each subsequent step i

pQily1 Y2r s Vi1, X)

Softmax
dec dec /
vinear hy*“ = LSTM (hi_l, emb (yi_l))
hy - I T — 1, OZ p— Whglec
Encoder— F Y T
LSTM p| LSTM =P wereeeene —»| LSTM p'l o SOftma/x(Oz)

A greedy local Greedy search:
Vi = 31"gm3Xyi,P(yi’|X1:n» Yi.i-1)

Model 1: Seq2seq using LSTM np NLP

* Training:

Given an input sentence: Xq.,, = X, X2, ..., Xp,
N m;
L==)) log (P}, Yij—)
=1

L j=1

Generating an output sentence: Y1.,,, = ¥1,¥2, -+, Ym

Model 1: Seq2seq using LSTM ne

* Target vocabulary

» OOV: Vocabulary, in the scale of 10* is very large. So highly

infrequent words are not considered to make the model smaller.

« <UNK>: adding a special token <UNK> to address OOV
problem, so that gradients can be computed.

* Disallowing the <UNK> from being generated may lead to
inconsistency between training and testing. So some post-
processing can be conducted.

NLP

Contents ne NLP

* 16.1.2 Model 2: Adding more source features using target-to-

source attention

Model 2: LSTM using attention e NLP

 Lack of model 1

« Model 1 gives competitive results for MT and summarization, however,
source representation vector h®"¢ is the only connection point.

« RNNs face challenges in maintaining long-range dependencies
between target and source words, when sentences are too long.

lSoftmax | pilys, ¥, s Yic1, X)

Model 2: LSTM using attention e NLP

* Intuition beyond model 1

* Keep the source at hand in each generating step.

* Consider the hidden states for each source word simultaneously

as the representation of whole source sentence rather than using
only the last hidden states.

Encoder Decoder

//’, a7
enc henc penc an y;
2 n Attention t
y'y
nenc encyie enc enc .
dec
hi

ec c C -
2
/ /
LSTM fe— - LSTM fe—])" embx) { sTv o e B LSTM

22

Model 2: LSTM using attention

Construct a context vector using attention mechanism

Encoder

r

h enc

h enc

henc }enchen \henc hen
LSTM LSTM

-

2, embx) LSTM » LSTM
- I 3
emb(x,) | |emb(x,)
X1 X2

Decoder
A
A\ a 'd N\
ar
henc an
X henc
hgec h¢1iec h‘iiec
—] D embx LSTM LSTM LSTM
- A A A
LSTM emb' (< s >) emb' (y;_D|| emb’ (y)
emb(x,)
xn

23

NLP

Model 2: LSTM using attention e NLP

* Construct a context vector using attention mechanism

Decoder
Al
a e A\ n
a% enc
& ci =Y ajjh;
Attention ‘}:i jzl
d d h¢ - h¢ Qg5 — eXP(eij)
hg® h{* i<1 i 1y — Zn
k=1 exp(eik)
LSTM LSTM LSTM T dec enc
eij = v, tanh(Whi®g + Ugzh5™)
emb' (< s >) emb’ (yi_ || emb’ (v)

24

Model 2: LSTM using attention

« Construct a context vector using attention mechanism

Decoder
A

a, e N\ .

a Introducing c¢; into LSTM gates
l
Attention Yi I'ESpeCUVGIy'Z
c; u; = U(Wuemb'(yi_l) + Uuhgfcl -+ CUCZ')
e e hs hee g o dec .
fi = o(Wremb (yi—1) + UshiZ + Cyci)
LS-|;M LSIM LS'|;|V| 0; = O’(Woemb/(yifl) + Uohglicl + Coci)
6?60 = u; o tanh(Wyemb'(y;_1) + Uhhffﬁ + Cpe;) +1; 0 églfﬁ
b b (y;_ b
emb' (< s >) emb (y;_)|| emb’ (y) h;:iec ~ o0 6?%

25

NLP

Model 2: LSTM using attention e

* Generation using attention mechanism as model 1

Decoder
A
a, r A
a;
ai
Attention Vi
A A dec . dec /
h{* = LSTM (h{“S, emb'(yi 1))
pdec pdec pdec o pdec o, — Whdec
0 1 i-1 i i — 7
LSTM LSTM LSTM p; = SoﬁmCW(O;)
A A A

emb' (< s >) emb’ (y;_y)|| emb’ (¥)

NLP

Model 2: LSTM using attention e NLP

e Beam search:

 Denote the probability of an output sequence as
model 1:

P(Y1.ilX1m) = PO X1.) P2y, X1m) - Pilyeiio1, X1m)

« Search for high probability, tracking top K on each
step.

« Beam search is not guaranteed to find optimal
solution.

e But much more efficient than exhaustive search.

Model 2: LSTM using attention e NLP

« Beam search : example (beam size: K= 2)

<5>

Calculate probability
of next word

28

Model 2: LSTM using attention e NLP

« Beam search : example (beam size: K= 2)

1.1 =P(hel<START>) + 0.6
he

/

<S>\ -
I
0.9 =P(II<START>)

Take top K words
and compute scores 29

Model 2: LSTM using attention

« Beam search : example (beam size: K= 2)

0.6

1.5 = P(love | <START> he) + 0.6

love

<S

<

hit

- 1.1 =P(hit| <START> he) + 0.6

- 1.8 = P(like |<START>1) + 0.9

like

he

>
I
0.9

<

get

1.4 = P(like | <START>1) + 0.9

For each of the K hypotheses, find
top K next words and calculate scores

30

NLP

Model 2: LSTM using attention e NLP

« Beam search : example (beam size: K= 2)

1.5

0.6 love

S

1.1

1.8
like

< get

1.4

he

<5>
I
0.9

Just keep K words with highest scores

31

Model 2: LSTM using attention e

« Beam search : example (beam size: K= 2)

0.6

1.9 = P(NLP | <START> he love) + 1.5

<S

<

he

>
I
0.9

<

1.5
NLP
love <
study
hit - 1.7 = P(study | <START> he love) + 1.1
1.1 :
. 2.6 =P(to|<START>1 like) + 1.8
1.8
fo
like <
play
get .
2.7 = P(play | <START>I like) + 1.8
1.4

For each of the K hypotheses, find
top K next words and calculate scores 32

NLP

Model 2: LSTM using attention

« Beam search : example (beam size: K= 2)

1.9
1.5 NLP
0.6 love <
he < _ study
/ hit 1.7
1.1
<S> 2.6
1.8
\ to
like <
| < play
0.9 get 2.7
1.4

Just keep K words with highest

SCores

33

NLP

Model 2: LSTM using attention

« Beam search : example (beam size: K= 2)

0.6

<

3.1

80

learn

<

he

<5>
I
0.9

3.5
3.4

1.9
1.5

NLP
love <

_ study

hit 17
1.1

2.6
1.8 0
like <

play
get 2.7
14

with

For each of the K hypotheses, find
top K next words and calculate scores

on

3.0

4.0

34

NLP

Model 2: LSTM using attention

« Beam search : example (beam size: K= 2)

1.9
1.5 NLP
0.6 love <
he < _ study
/ hlt 1.7
1.1
<S> 2.6
1.8
\ to
like <
| < play
0.9 get 2.7
14

Just keep K words with highest scores

3.1

80

learn

3.5
3.4

with

7

on

3.0

4.0

35

NLP

Model 2: LSTM using attention e NLP

« Beam search : example (beam size: K= 2)

1.9
1.5 NLP
0.6 love <
e < hit study 3.1 4.2
1.7
/ 1.1 20 to
2.
<5> 18 ° Z learn s NLP
' fo
\ 1o < 3.5 4.4
I < play 3.4 3.8
0.9 get 2.7 with J
1.4
on me
For each of the K hypotheses, find
top K next words and calculate scores 3.0 4.0 36

Model 2: LSTM using attention e NLP

« Beam search : example (beam size: K= 2)
1.9

1.5

NLP
0.6 love <
< study

3.1 4.2

hit 17

to

he
/ 1.1 g0
<5> 18 26 Z learn . NLP
\ ’ to
I
0.9

T < 3.5 4.4
< play 3.4 3.8

get 2.7 with | a
1.4
on me
This is the top-scoring
hypothesis! 3.0 40 37

Model 2: LSTM using attention

« Beam search : example (beam size: K= 2)

<S

3.1

80

learn

4.2

to

3.5
3.4

1.9
1.5 NLP
0.6 love <
he < _ study
/ hlt 1.7
1.1
> 2.6
\ 1.8 0
like <
| < play
0.9 get 2.7
14

with

NLP

A 4

4.4
3.8

Backtrack to obtain the full
hypothesis

on

3.0

me

4.0

38

NLP

Model 2: LSTM using attention e NLP

* Beam search: tips

 Usually we continue beam search until:
« We reach time step T (where T is some pre-defined cutoff), or
« We have at least n completed hypotheses (where 7 is pre-defined cutoff)

« Applying pruning to each time step:
« Enumeration of all possible candidates results in a mK|V| time
complexity.
« It is efficient to conduct pruning, keeping only the top 2K candidates.
* A type value of K in practice is 6.

Contents ne NLP

16.1.3 Model 3: Copying form the source

40

Model 3: Copying from the source ne NLP

» Copying is useful

 For machine translation, some technological terminologies

can be better left. copy

[) §
e Ilike tolearn NLP. ©> FKEW=SNLP,

* For dialogue, part of user utterance can be directly
included in a system response.

* Input: Hello, my name 1s XXX.
* Response: Nice to meet you, XXX.

Model 3: Copying from the source ne

* Copying: intuition

* Basic idea: allow a copying probability to be interpolated with a
vocabulary generation probability when generating each word.

Source vocabulary U (set of words in source sentence) and target
vocabulary V > U U V)

The integration of copy probabilities into generation
probabilities

Generation probability:
scoreg(y; = vji) = pilvi],v; €V

How to integrate?

NLP

Model 3: Copying from the source ne NLP

» Copying: How to integrate copy probabilities ?

 Pointer network:

* Reuse the attention weights as a distribution over source
vocabulary U.

« Copying network:

* Take a dedicated neural network layer for calculating the
COpy score.

Model 3: Copying from the source ne

 Pointer network

Take attention score a;; as the distribution of a pointer to a
source word:

score.(y; = xx) = i, k € [1, ...,n]

The pointers to the same word in the source vocabulary U
are then aggregated:

score.(y; = u;) = Z ai,u; €U,jeEL, .., |U[]

k:xg=u;

Finally, for the generation of y;, the generation probability
and the copy probability are linearly interpolated:

score(y;) = Ascorey(y;) + (1 — A)score (y;),

NLP

Model 3: Copying from the source ne

» Copying network

A copying network calculates score. directly, by taking the
current decoding state h%¢¢ and the encoder hidden state of a
source word h;"* as input:

score.(y; = uy) = z tanh (hf”CWC)h?ff

Jixj=ug

 The probability of generating a target word y; is calculated by the
sum of a generate probability and a copy probability:

PilX1m Y1:i-1) = Pg()’i|X1:n: Yi.i—1) + P (il X1, Yl:i—l)

NLP

Model 3: Copying from the source ne NLP

» Copying network

* P, and F, represents normalized versions of score; and

score., which are a part of a distribution P of the
generation and copy:

il i
S 5 __) 7 exp(scoreg(yi =v;)),y: €V
[).(/(!/1 —‘J’)(l:nf)lzl l) = 9 ()sf/i,¢ %
fik
i - exp(score.(y; = ug)),y; € U
Py = wp| X1:n, Y154 =44
(,/l. I.’ liny £ 122 l) (),;l/-i ¢ [J

where

Z =Y ey exp(scorey(v))+>,cu exp(scorec(u))

46

Contents ne NLP

16.1.4 Subword Embedding

47

Subword Embedding ne

* Dealing with OOV words

¢ The prefix and the suffix can give us hints about the meaning of
a word. Inspired of this, we can make use of subwords to enrich
vocabulary instead of a <UNK> tokens in model 1, 2 and 3.

« First consideration is morphological segmentation, however, it
can be ambiguous and not able to cover all words.

* Byte-pair encoding (BPE) is a useful algorithm:
Most frequent byte pair = a new byte.

48

NLP

Subword Embedding NP N| P

* Original BPE

 Suppose to compress the following text using BPE:

aabaadaab
 The byte-pair aa is the most frequent pair, which can be

replaced by an unused code Z:
ZbZdZb

 Then repeat the process with replace Zb by Y:

YZdY
« YZdyY is the final representation, since there are no pairs
that occur more than once.

Subword Embedding

 Expanding the vocabulary using BPE

« Start with a vocabulary of characters

* Most frequent n-gram pairs = a new n-gram

Corpus

2 bed

2 better
3 east

4 west

Vocabulary

b,e,d tras w

Start with all characters in vocabulary

50

NLP

Subword Embedding ne

 Expanding the vocabulary using BPE

« Start with a vocabulary of characters

* Most frequent n-gram pairs = a new n-gram

Corpus Vocabulary

2 bed b,ed tra,s w, st
2 better

3 east

4 west Add a pair (s, t) with frequency 7

51

NLP

Subword Embedding

 Expanding the vocabulary using BPE

« Start with a vocabulary of characters

* Most frequent n-gram pairs = a new n-gram

Corpus

2

2
3
4

be d
better
e a st
w e st

Vocabulary

b,e, d, tr a s, w st be

Add a pair (b, e) with frequency 4

52

NLP

Subword Embedding

 Expanding the vocabulary using BPE

« Start with a vocabulary of characters

* Most frequent n-gram pairs = a new n-gram

Corpus Vocabulary

2 bed b,e d, tra, s w, st be
2 better

3 east

4 west Final vocablary

53

NLP

Subword Embedding NP N| P

 Expanding the vocabulary using BPE

« Start with a vocabulary of characters

* Most frequent n-gram pairs = a new n-gram

Corpus Vocabulary

2 bed b,e d, tra, s w, st be
2 better

3 east A new OOV word: best

4 west > be@@ + st

54

Subword Embedding NP N| P

* Byte Pair Encoding: tips

« Have a target vocabulary size and stop when you reach it.

« Segmentation is only within words identified by some
prior tokenizer.

* Automatically decide vocabulary for system.

55

Contents ne NLP

16.1.5 Seq2seq using Attention Network

56

Seq2seq using Attention Network

e Transformer

Encoder Layer—<

- Feed-forward -<

i 1 Hlm
/
—[LayerNorm]
mh
e 7
1
s Concat
™~ Multi-Head _< : [i
heady, .
-
?}2 [Scaled Dot-Product Attention
S I —— i
~ p——— . A
1
Positional Encoding | .
ositional Encor mg: [] [] [] :

- ———————

N _I‘_ﬁ _______ 2

|

An extension to SAN in chapter 13.
It has been shown a competitive alternative to RNNs

1
1
: [;20 cat]
[
.
: [Scaled Dot-Product Attention
S| I (S, (—
Hdlm
[LayerNorm }
Hdmh
ll N
1 1
: [;Zoncat] \
: fu 1
! [Scaled Dot-Product Attention :
S, RO (| (—_—
T

>— Decoder Layer

J

NLP

Seq2seq using Attention Network ne

 Encoder: Self-attention

Self-attention layer

hy h, h;

t t t
FFN FFN FFN
1 i f
. N
(X X w
t I I
! ! !
I love NLP

Input of a self-attention layer:
V? = Vi1,V9,...,Vy Vi e R7*dn
Output of a self-attention layer:

H? = hy,hs,....h, H} € Rnxdn

1 = attention(VYy, V7, VT)

=

Q=K=V

NLP

Seq2seq using Attention Network np NLP

e Encoder: Multi-head self-attention

\

! Concat |

I - :
I 4

| Scaled Dot-product attention 1] :

: 1 i i !

(~ (1

| f JJ 4 I

I KQV JJ KQV KQV]-‘ |

\
NP - T___

head; = attention(Vi W1V, V?W";ey7 V?W})alue)
h™" = MultiHead(h™, h'" h'™)
MultiHead(V", V? V) = concat(heady, ..., head,) W

59

Seq2seq using Attention Network np NLP

* Encoder: Layer normalization

¢
e | {CD D % 5
oo~ ;

Encoder Layer—< > H™ I I
—(Loyerorm] h"" = LayerNorm(V7{ + h™")
_____________ 7 s B,
I
~ Multi-Head _< i id [;Zoncat]
eady

hhegﬁz [Scaled Dot-Product Attention]1]

b i

~ p—— 1

Positional Encodingi [] [] st \i
I | [T | 7N .
. J) 60

Seq2seq using Attention Network np NLP

* Encoder: Feed-forward sub-layer

[I ‘\
_ Feed-forward —< i [i] []] :Lé] i
o o — |

Encoder Layer—< > _____ l_ ________ I _l';l;l ________ J _____ l H ff, = ReL U (Wff, H tm + b ff,)
— e J H/f = WITH/S + bff
~ Multi-Head _< i id [;Zoncat]
hhegﬁz [Scaled Dot-Product Attent]1]
b i
\\ Hiln

Positional Encodingi [] [] \i
I | [T | 7N .
) C_J- 61

Seq2seq using Attention Network np NLP

* Encoder: output

¢
e | {CD D % 5
oo~ ;

d) \ Hlm
AR 4 [] HO% = LayerNorm(H/7 + Hlm)
EEEEE—— LayerNorm
_____________ 7
'/
- Multi-Head _< i [el]
healdk i

hh 3?:2 [Scaled Dot-Product Attention]1]
U D J____.

S m— V. S

Positional Encodingi [] [] st % \i
I | [T | 7N .
. J) 62

Seq2seq using Attention Network

QP

* Encoder: input encoding and position embedding

Encoder Layer—<

~ Feed-forward —<

Hene
/—'{ LayerNorm]

7
¢ .
COC - ;
] l :
A o — :
S DR | 1.

> Him
—»[LayerNorm]
_____________ B s e
: [Concat] \:
healdk, i :
hgggﬁz [’ Scaled Dot-Product Attentio]1] E
SO R T . ’
D — . A
Posit alEncdg:{ [] [] st %i
S T] Ve [Ya_.

)]

X; = emb(x;) + V/
VP[2j] = sin(i/1oooozf/d_h)
VP[2j + 1] = cos(i/100002//4r)

63

NLP

Seq2seq using Attention Network

e Decoder: similar to encoder

lHdec
[LayerNorm]‘—
Y
L J | J |]
[[[!
L) |] - | J
o o] (-
Hclm
[La-yerNom]
____________ 1 ___.
f [Concat] E
1 p i :
i [Scaled Dot-Product Attention]l]:
.~ L _____ } ___________ —___/
encoder b
[LayerNorm]'—
_____________ HT L
i [Concat] E
1 i |
[Scaled Dot-Product Attention ﬂ] 1
RO R U PR
s . |
O

> Decoder Layer

J

QP

Obtain the next target word
0; = wdechqiei:
i
p; = softmax(0;)

MLP layer

HYT' = ReLU(WY T HEIM + U T")
HYf = WSS 4 pafs’
H%¢ = LayerNorm(HY/ + H¢™m)

Target to source attention

H¢ = MultiHead (H*™, H®", H*")
H™ = LayerNorm(H¢ + HE™)

Target self-attention

HY™h = MultiHead (Y1.i—1, Y1.i-1, Y1:i-1)
HY™ = LayerNorm(Yy.;_1, Hdmh)
Embedding & positional encoding
Yi.;-1 = [emb'(y1), emb'(y2), ..., emb" (y;-1)]

64

NLP

Seq2seq using Attention Network np NLP

* Training:

Given a set of input-output sentence pairs: D = {(X;,Y)}|¥,

XZ — 3717 x2’ soey xn

Yi = 45,08, s U,

Object function:

N m; N m;
L==> > log®;yD =)) log(POfIX V)
=1 =1

i j=1 i j=1

Seq2seq using Attention Network

« Why self attention:

QP

Layer Type = Complexity per Layer Sequential =~ Maximum Path Length

Operations
Self-attention O(n®-d) 0(1) 0(1)
Recurrent O(n-d?) 0(n) 0(n)
Convolutional 0(k -n-d?) 0(1) 0(log,(n))

n =sequence length d =depth k = kernel size

NLP

Contents ne NLP

16.2 Text Matching Models

67

Text Matching Models ne NLP

 Text matching: whether two pieces of text semantically match each other.

Paraphrase detection, text entailment detection...

* Searching for a match: find a section in a given piece of text that matches
the meaning of another piece of text.

Machine reading comprehension...

Text 2
Text 1

Match ? yd

(a) Matching two pieces of text (b) Searching for a match

68

Contents ne NLP

16.2.1 Matching Two Texts in Parallel

69

Text Matching NP NP

 Text matching:

How many people live in Melbourne

Matching O

What's the population of Melbourne/ Probability

70

Text Matching ne

e Siamese network:

 Apply identical encoders to represent both sentences.

« Parameters are shared between both encoders.

Match Probablities
tp
Distance Function

LSTM <€Shared Weights>| LSTM

1 |

X! X?

How many people live in Melbourne What's the population of
Melbourne

71

NLP

Text Matching NP N[P

e Siamese network:

Match Probablities
I p

Distance Function

H/ \H2

LSTM [€«Shared Weights» ~ LSTM

I |

Xl XZ
Win, = wi,wy, ..,wn, emb(W?) = [emb(w]); emb(W3); ...; emb(w;i)]

Win, =wi, Wi, ...,ws, emb(W?) = [emb(w?); emb(w3); ...; emb(w2))]

72

Text Matching

Siamese network:

H/ \Hz

Match Probablities

I p

Distance Function

H! = BiLSTM(emb(W?'))

H? = BiLSTM (emb(W?))

LSTM [€«Shared Weights» ~ LSTM
X!)IZ

1 1

1 —
Wl:n1 = Wi, Wy, ..

2 2

2 _
Win, = wi,wj, ..

.,W%1 emb(W?1) = [emb(w?); emb(w3); ---iemb(Wﬁl)]

L W5, emb(W?2) = [emb(w}); emb(w3); ...;emb(wﬁz)]

73

NLP

Text Matching NP N[P

e Siamese network:

Match Probablities
I p
Distance Function d@'st(hl : hz) = R1
H/ \H2 N
h' = 1),

ni?
LSTM [€«Shared Weights» ~ LSTM

h? = [h2,;]
l]

no?
X! X2

Win, = wi,wy, ..,wn, emb(W?) = [emb(w]); emb(W3); ...; emb(w;i)]

Win, =wi, Wi, ...,ws, emb(W?) = [emb(w?); emb(w3); ...; emb(w2))]

74

Text Matching NP N[P

e Siamese network:

Match Probablities
Tr Ly
P(match(W*, W#4)) = g(0)
Distance Function o = MLP(h! @ h?)
H/ \H2
ﬁ
LSTM [€Shared Weights» ~ LSTM h'! =[h; ; EH
| —
I T h? = [h2,;h3)
x! X2 2

Win, = wi,wy, ..,wn, emb(W?) = [emb(w]); emb(W3); ...; emb(w;i)]

Win, =wi, Wi, ...,ws, emb(W?) = [emb(w?); emb(w3); ...; emb(w2))]

75

Text Matching ne

* Training:

Match Probablities
Given a set of labeled training data T p

Distance Function

D = {(WLW2)bV, 7 T

LSTM €«Shared Weights» ~ LSTM

The training objective function can be to minimize the f
negative log-likelihood loss function I

N
L=— z(yilogP(match(Wil, W2)) + (1 — y)log(1l — P(match(W, W)

=1

76

NLP

Text Matching

* Attention matching network:

Match Probablities
Ap
MLP
. T
Ave + Max |P| Ave + Max
Attention Attention
__ = 7
_ H' CTimeesnzllT H>
LSTM LSTM
X! X2

Compared to Siamese network:

Match Probablities
tp

Distance Function

H/ \Hz

LSTM €Shared Weights>| LSTM

77

NLP

Text Matching

* Attention matching network:

Match Probablities

Ap

MLP

Tm

Ave + Max

Ave +

Max

U/

Attention

"""""

Same to the Siamese network emp(W?) = [emb(w?); emb(W2); ... emb(w?)]

'\U2

Attention

emb(W?) = [emb(wi); emb(wW3); ...; emb(wy)]

78

NLP

Text Matching

* Attention matching network:

Match Probablities

Ap

MLP

Ave + Max

For

Ave + Max

U/

Attention

emb(W1) = [emb(wi); emb(w3); ...; emb(w;:)]

emb(W?) = [emb(w?); emb(w3); ...; emb(wz)]

-

'\U2

Attention

H! = BiLSTM (emb(W?1))
H? = BiLSTM (emb(W?))

79

NLP

Text Matching

* Attention matching network:

Match Probablities

Ave + Max || Ave + Max

U/ '\U2

Attention Attention
Y- T 7
H' ezl H’
LSTM LSTM
X! X2

sij = V'tanh(W'h} + W?h? + b)

eXp(Sij)
tj
Zkz—l exp (Slk)
nz
1
hi - al]
j=1

80

NLP

Text Matching

* Attention matching network:

Match Probablities

Ap
MLP
Tm
Ave + Max |[P| Ave + Max
Attention Attention
X<—0__ %
H' limeesiIlT H?
LSTM LSTM
X! X2

QP

Additive attention
Denoted:

H! = sent_att(H, H?)
H? = sent_att(H? H?)

81

NLP

Text Matching

* Attention matching network:

Match Probablities

Ap

MLP

U

Ave + Max

For

Ave + Max

U/

Attention

-

'\U2

QP

Concatenate the original
vectors and the matching
vectors:

= avg(Q") ® max(Q") @ avg(Q*) @ max(Q?)
Q! = [h! @ hl;h} @ h};..;h: G hl]
Q?=[h?@h%hidh...;h2 @ hZ

Attention

ave: Bitwise average pooling
max: Max pooling

@: Cancatenate

82

NLP

Text Matching

* Attention matching network:

Match Probablities

Ap

MLP

U

Ave + Max

For

Ave +

Max

U/

Attention

'\U2

el

QP

Final multilayer perceptron
for matching probability:

P(match(W1,W?)) = o(MLP(U))

= avg(Q") ® max(Q") @ avg(Q*) @ max(Q?)
Q! = [h! @ h;h} @ h;..;h: O hl]
Q?=[hZ®dhZhidh..;h: ©hZ

Attention

ave: Bitwise average pooling
max: Max pooling

@: Cancatenate

83

NLP

Text Matching NP N[P

» Bidirectional attention matching network:

* Similarly, Bi-direction attention (co-attention) can be used to extract
the mutual information between H! and H?.

H! = Dup(H,n,)
H? = Dup(H? n,)
S = avg,(V(H! @ (H*)T,; ® (H' ® (H)T,3)))

* Attention weight matrix:
a; = softmax,(S)
a; = softmax,(ST)

* The bi-directional attention output U

U=HoH ¢ H ®a] o [H ® as]

84

Contents ne NLP

16.2.2 Searching for a match

85

Searching for a

* Network structure

Prediction Layer <

Match

searching for a match:

— START END

Tpl TPZ

BiLSTM + Softmax

Dense + Softmax


~~~~~~~
.

-

»| BiLSTM ]

Ui U Un,
. . )}
Attention Matching Layer J‘
hi h3 hn,
[ Context Representation Layer ]

)

w2 ]

86

NLP



Searching for a Match ne NLP

« Network structure searching for a match:

START END

Given a context sequence W1
1 2 . .
IP I P and a query W?, the task is to find an
Dense + Softmax BiLSTM + Softmax answer Span
Iql': ___________ =k
Fo e N — e — wl 1
___________________ Y = (W )b - wb7 "'7we
[ 50 m‘—'m } that matches W2
U11 U21 U1
2
1
[ Attention Matching Layer J‘
hi h3 hy,
[ Context Representation Layer }
[ Wi ] [ W21 ] Wn; l w? I

87



Searching for a Match ne NLP

« Network structure searching for a match:

START END . . .
Encoding with Bi-LSTM
[ [
Dense + Softmax BiLSTM + Softmax
Ip;: ____________ o
| G IH[M}—»M] H! = BiLSTM (emb(W1))
2 ; 2
o ot U H? = BiLSTM (emb(W?2))
2
N
[ Attention Matching Layer J‘
 hi h} ha, )
[ Context Representation Layer ]

\[Wll][wzl] A Y, ([ w? ]

88



Searching for a Match ne NLP

« Network structure searching for a match:

START END

Ipl I . Additive attention for matching:
Dense + Softmax BiLSTM + Softmax
'ﬂi:~ ____________ g
————————————————————— Sij = VTtClTlh(Wlhl1 + thjz + b)
(BitsT™ I-»[M}—»W]
[ o = exp (Sij)
Tt T T Ij = ong
U U; Un, R Zk=1 exp (Sik)
h? n
[ 2
Attention Matching Layer N s
A A g y A J h% Z al] hz
\ h% hzl h%l / j=1
[ Context Representation Layer ]

89



Searching for a Match ne NLP

« Network structure searching for a match:

START END

: 2 Final representation:
P p
Dense + Softmax BiLSTM + Softmax
'ﬂ’l:~ ____________ s
PN sy N 1 —hlmil.hl ™l ki i1
"""""""""" U - [h]_ @h ;h2 @h ) ""hnl @hnl]
| (st l«»[w%—»@]
- U3 Un, )
2
.
[ Attention Matching Layer J‘
\__M hi hn, y
[ Context Representation Layer ]

90



Searching for a Match

NLP

« Network structure searching for a match:

-

START

\
[

Dense + Softmax

END

[»

BiLSTM + Softmax

Start Predicting;:

MP? = BiLSTM(U?)

,”:: __________ VR
[ | BiLSTM ]-»| BILSTM ]+—>]
ui| ui] Un,
N Y §
A
Attention Matching Layer J‘
hi h3 hn,
[ Context Representation Layer ]
T
[ Wl1 ] [ W2 ] Wn;

Q’ =[ui ®m;u; G m3;...;u;, Gm)
(i) = (TQY € [1, . mi]
p? = softmax(s?)
Cw* ]

91



Searching for a Match ne NLP

« Network structure searching for a match:

START / END \

) , End Predicting:
E E
Dense + Softmax BiLSTM + Softmax
,”::"“\\‘ TR
T Q° = [ui @ mf;uz @ ms;...;up, O my |
[ (BiLSTM Je( BILSTM —>] séli] = ("e)T s i€el, ...,nl]
e _ e
* t I = softmax(s
i
j
[ Attention Matching Layer J‘
hi h3 hn,
[ Context Representation Layer ]
[ Wi ] [ W21 ] Wn; l W2 I

92



Searching for a Match ne NLP

« Network structure searching for a match:

START END . .
Training:
1 2
E E
Dense + Softmax BiLSTM + Softmax
~_ =%
_‘_‘:_::»«;:.;:_—‘_{ ’ \ N
""""""""""""" L = . efe.
[ (BisT Jer{ BILSTM ) m] N (log(p [b:]) + log(p®le;i]))
[
U11 U21 Un,
e hiz
[ Attention Matching Layer J‘
hi h3 hn,
[ Context Representation Layer }
[ Wi ] [ W21 ] Wn; l W2 I

93



Contents ne NLP

16.2.3 Memory network

94



Memory Network ne NLP

e Previous methods are weak in some case:

 In many case, the correct answer to a question cannot be directly read off
one evidence, but multi-stage inference is required instead.
« For instance, suppose that the document is

Joe travelled to the office.
Joe left the milk.

Joe went to the bathroom.
Q: Where is the milk now?

one needs to find out the most relevant fact:
“Joe left the milk”

Then, one needs to consider the second relevant fact,
“Joe travelled to the office”,

before finding a to describe the answer “office”.
95



Memory Network ne NLP

* Why memory network:

 Neural networks have hard times to capture long-range
dependencies, even LSTMs.

« Multi-stage inference is necessary in machine reading
comprehension.

« Memory networks try to overcome these problem using
an external memory.

96



Memory Network ne NLP

* Intuition of memory network:

* A neural network: LSTM, SAN, ...

Fully connected

Fully connected

Bi-LSTM
Bi-LSTM
embedding

A Neural network

97



Memory Network

* Intuition of memory network:

* A neural network: LSTM, SAN, ...
* An external memory

Fully connected

Fully connected

Bi-LSTM
Bi-LSTM
embedding

A Neural network

@ @

O O

@ @

o o 0 O
o o o0 O

@ @

98

NLP



Memory Network

* Intuition of memory network:

* A neural network: LSTM, SAN, ...
 An external memory where the neural network can write and read to

Fully connected

Fully connected

Bi-LSTM
Bi-LSTM
embedding

A Neural network

writing

reading

® O |

® O |

® O |

o 0 0 O

o 0 0 O

@ O |

99

NLP



Memory Network ne NLP

* Memory network structure: a memory and 4 components
e Input feature map(l): encodes the input into a hidden representations, e.g.
bag of words
* Generalization(G): stores the input into memory
 Output feature map(O): read the most relevant memory slots

 Response(R): given the info. read from the memory, return the output.

Input
Text —»[ component [ ]—»[ clomponeAntG ]

Memory M [1121?:1 -I-- In]
QTL;i;y —>[ compotmentO ]—»[ component R ]—> AVI:/ZV:?

100



Memory Network nP NLP

* End2end memory network for QA: an example

Joe travelled to the office. 5"
Joe left the milk. .
Joe went to the bathroom. ! [ - P

-----

Q: Where is the milk now? g -

101



Memory Network ne NLP

* Component I: Input Representation

Raw text sentence is transformed in its vector representation e.g. BOW.

Joe travelled to the office.
Joe left the milk.
Joe went to the bathroom.

ng

m; = Z embE" (w))

j=1

lj is position encoding to capture the order of the words.
= =j/n) = (@/dp)(A = 2j/n;)

102



Memory Network ne

* Component G:

« The sentences are then written to the memory sequentially, via
the component G:

nj
Joe travelled to the office. m. — Z [ . embE® (W)
Joe left the milk. l = J
oe went to the bathroom. B
\__o eool J M= [m,;..; mnR]

M

 Notice that the memory is fixed in this approach once is
written, it is not changed neither during learning nor during
testing.

NLP



Memory Network ne NLP

* Query text Representation

 Similar, query representation as follow:

nQ
u= 2 12 embEQ(WiQ)a

i=1

Q: Where is the milk now?

l; is position encoding to capture the order of the words.

12 =01 —i/ng)— (1/dp)(1—2i/ng)

104



Memory Network np NLP

« Component O: matching

« The most relevant memory blocks are found by calculating p
over memory cells m;:

Joe travelled to the office. .
Joe left the milk. S; = uw Iy
Joe went to the bathroom. pli] = — ReXp(Si)
M Zk=1 exp (Sk)

Q: Where is the milk now?
U

105



Memory Network np NLP

* Component O: output

« Then, we calculate a context vector o in accordance with p.

Joe left the milk.

Joe went to the bathroom.

M Finally, the output
evidence vector:

n
Joe travelled to the office. c; = 2 l} : embER’(Wji)
j=1

Q: Where is the milk now? 0= z p [i]c;
U

106



Memory Network ne NLP

« Component R: response with component O

* ai] represents the probability of the i th word from the vocabulary
being the answer word with the evidence vector o.

Joe travelled to the office.
Joe left the milk. q=W(o+u)

Joe went to the bathroom. a = softmax(q)
M

 But, we can not get the answer directly. More steps can be necessary.

Q: Where is the milk now?
U

107



Memory Network ne NLP

« Component R: response with multi-hop

«  We can leverage the existing evidence vector o for finding a new
distribution p over memory cells, which in turn results in a new
context representation of o.

Joe travelled to the office.

Joe left the milk.

Joe went to the bathroom. Upiq = Ug + O
M qx = W(og + ug)

Q: Where is the milk now?

U
* This is typically called a hop in inference.

108



Memory Network np NLP

* Training

« Given a set of training data: D = {(Df, WiQ, a)} N,

Standard cross-entropy loss

@ @oo || Joetravelled to the office. with the inference above-
eooao || Joeleftthemilk.

ooooll Joewenttothe bathroom.

N
M L=- z log (a;[a;])

oo oo | Q: Whereis the milk now?

U

109



