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Chapter 4

Discriminative Linear Classifiers
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• Input 𝑥 = 𝑤!, 𝑤", … ,𝑤# output class 𝑐

Feature vector Naïve Bayes Parameter Vector
SVM
Parameter
Vector

Perceptron
Parameter
Vector

𝜙 𝑥, 𝑐 =
<𝑐!, 𝑤!𝑐!, 𝑤"𝑐", … , 𝑤 # 𝑐!,
𝑐", 𝑤!𝑐", 𝑤"𝑐", … , 𝑤 # 𝑐",

…
𝑐 $ , 𝑤!𝑐 $ , 𝑤"𝑐 $ , … , 𝑤 # 𝑐 $ >

𝜃=
<𝑙𝑜𝑔 𝑃(𝑐!) , 𝑙𝑜𝑔 𝑃 𝑤! 𝑐! , 𝑙𝑜𝑔 𝑃(𝑤"|𝑐!) , … , 𝑙𝑜𝑔 𝑃(𝑤 # |𝑐!),
𝑙𝑜𝑔 𝑃(𝑐") , 𝑙𝑜𝑔 𝑃 𝑤! 𝑐" , 𝑙𝑜𝑔 𝑃(𝑤"|𝑐") , … , 𝑙𝑜𝑔 𝑃(𝑤 # |𝑐"),

…
𝑙𝑜𝑔 𝑃(𝑐 $ ) , 𝑙𝑜𝑔 𝑃 𝑤! 𝑐 $ , 𝑙𝑜𝑔 𝑃(𝑤"|𝑐 $ ) , … , 𝑙𝑜𝑔 𝑃(𝑤 # |𝑐 $ ) >

Each instance trained separately using MLE.

Trained
together
with a
large-
margin
objective

Trained
together
online.
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Discriminative linear classifiers
• The general form:

𝑠𝑐𝑜𝑟𝑒 𝑥, 𝑦 = θ ⋅ ϕ 𝑥, 𝑦

• Instances :
• SVMs
• Perceptrons

• Advantages over generative models (e.g. Naïve Bayes):
• flexibility in feature definition
• a direct training goal of minimizing prediction errors.

• Disadvantage:
• No probabilistic interpretation
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Log-linear Models

• Probabilistic discriminative linear model
• Motivation: the Naive Bayes classifier:

𝑃 𝑐 𝑑 ∝0
!"#

$

𝑃 𝑤! 𝑐 𝑃 𝑐

The log form of P(c|d) is a linear model:

𝑙𝑜𝑔𝑃 𝑐 𝑑 ∝ ∑!"#$ 𝑙𝑜𝑔𝑃 𝑤! 𝑐 + 𝑙𝑜𝑔𝑃 𝑐

which is similar to a discriminative linear model.

• Design: 𝑃 𝑦 𝑥 ∝ 𝑒𝑥𝑝 θ ⋅ ϕ 𝑥, 𝑦
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Log-linear model for multi-class classification

• Inputs : 𝑥 ∈ 𝑥
• Outputs : 𝑦 ∈ 𝐶

Which can also be described as:
𝑃 𝑦 𝑥 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥% θ ⋅ ϕ 𝑥, 𝑦
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Log-linear model for binary classification

• Sigmoid function is an exponential function that maps a 
number in  [-∞, ∞] to [0,1].

σ 𝑥 =
𝑒&

1 + 𝑒&

• a binary classifier score(y=+1)= θ ⋅ ϕ 𝑥 ∈ −∞,+∞ can be 
mapped into a probabilistic classifier

𝑃 𝑦 = +1 𝑥 = 𝜎 θ ⋅ ϕ 𝑥 =
𝑒'⋅) &

1 + 𝑒'⋅) &

𝑃 𝑦 = −1 𝑥 = 1 − 𝜎 θ ⋅ ϕ 𝑥 =
1

1 + 𝑒'⋅) &
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Training log-linear models

• We want to train the parameters θ so that the scores P(⋅) truly 
represent probabilities.

• Training examples : 𝐷 = |𝑥! , 𝑦! !"#
*

• Using maximum likelihood estimation (MLE) :
The training objective is 

𝑃 𝑌 𝑋 =0
!

𝑃 𝑦! 𝑥!

which is maximizing the conditional likelihood of training data.
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Training binary log-linear models

• Given 𝑃 𝑦 = +1 𝑥 = ($⋅& '

)*($⋅& '
, our MLE training objective is 

𝑃 𝑌 𝑋 =)
+

𝑃 𝑦+ 𝑥+ =)
+(
𝑃 𝑦 = +1 𝑥+ )

+)
𝑃 𝑦 = −1 𝑥+

• Maximizing P(Y|X) can be achieved by maximizing

log P(Y|X)

= ∑+ 𝑙𝑜𝑔𝑃 𝑦+ 𝑥+
= ∑+( 𝑙𝑜𝑔𝑃 𝑦 = +1 𝑥+ + ∑+) 𝑙𝑜𝑔𝑃 𝑦 = −1 𝑥+
= ∑+( log

(*⋅+ ',

)*(*⋅+ ',
+ ∑+) log

)

)*(*⋅+ ',

= ∑+( θ ⋅ ϕ 𝑥+* − log 1 + 𝑒,⋅. /,
(

−∑+) log 1 + 𝑒,⋅. /,
)
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Gradient descent

• For log-linear model, the gradient of the objective is :

𝑔⃗ = ./012 𝑌 𝑋
3

= ∑4% ϕ 𝑥4 − 5&⋅( )*

675&⋅( )*
ϕ 𝑥4 − ∑4+

5&⋅( )*

675&⋅( )*
ϕ 𝑥4

= ∑4% 1 − 5&⋅( )*

675&⋅( )*
ϕ 𝑥4 − ∑4+

5&⋅( )*

675&⋅( )*
ϕ 𝑥4

= ∑4% 1 − 𝑃 𝑦 = +1 𝑥4 ϕ 𝑥4 − ∑4+ 𝑃 𝑦 = +1 𝑥4 ϕ 𝑥4
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Gradient descent
• A simple numerical solution to the minimization of convex 

functions.
Gradient Descent

• Here α is the learning rate (hyper-parameter)
• Finding 𝑔⃗ at each iteration can be computationally inefficient.
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Gradient descent

• General numerical optimization method.
SVM can be optimized with gradient descent too.

• Converges to a local minimum dependent on the initialization.

• Can be slow when the number of training instances N is large.
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Stochastic gradient descent (SGD)

Stochastic Gradient Descent

• SGD updates model parameters more frequently, and converge much faster 
than gradient descents
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SGD for binary classification log-linear model

Stochastic gradient descent (SGD)

𝑔⃗ = ./012 𝑌 𝑋
3

= ∑4% ϕ 𝑥4 − 5&⋅( )*

675&⋅( )*
ϕ 𝑥4 − ∑4+

5&⋅( )*

675&⋅( )*
ϕ 𝑥4

= ∑4% 1 − 5&⋅( )*

675&⋅( )*
ϕ 𝑥4 − ∑4+

5&⋅( )*

675&⋅( )*
ϕ 𝑥4

= ∑4% 1 − 𝑃 𝑦 = +1 𝑥4 ϕ 𝑥4 − ∑4+ 𝑃 𝑦 = +1 𝑥4 ϕ 𝑥4

Negated for positive samples 𝑃 𝑦 = +1 𝑥4 − 1 ϕ 𝑥4
Negated For negative samples 𝑃 𝑦 = +1 𝑥4 ϕ 𝑥4



18

Contents
• 4.1 Log-Linear Models

• 4.1.1 Training binary log-linear models
• 4.1.2 Training multi-class log-linear models

• 4.1.3 Using log-linear models for classification
• 4.2 SGD training of SVMs

• 4.2.1 Binary classification
• 4.2.2 A perceptron training objective function

• 4.3 A Generalized Linear Model for Classification

• 4.3.1 Unified Online Training
• 4.3.2 Loss Functions
• 4.3.3 Regularization

• 4.4 Working with Multiple Models
• 4.4.1 Comparing model performances
• 4.4.2 Ensemble models



19

Multi-class log-linear models

• For training pairs ϕ 𝑥+, 𝑦+ , where 𝑦+ ∈ 𝐶, 𝐶 ≥ 2.
The probability of 𝑦+ = 𝑐, 𝑐 ∈ 𝐶 is:

𝑃 𝑦+ = 𝑐 𝑥+ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 θ ⋅ ϕ 𝑥+, 𝑐 = ($⋅& ',,.

∑./∈ 1 (
$⋅& ',,./

• The log-likelihood of D is

𝑙𝑜𝑔𝑃 𝑌 𝑋 = ∑+ 𝑙𝑜𝑔𝑃 𝑦+ 𝑥+ = ∑+ θ ⋅ ϕ 𝑥+, 𝑦+ − 𝑙𝑜𝑔 ∑1∈3 𝑒,⋅. /,,1

• For each training example,
𝑙𝑜𝑔𝑃 𝑦+ 𝑥+ = θ ⋅ ϕ 𝑥+, 𝑦+ − 𝑙𝑜𝑔 ∑1∈3 𝑒,⋅. /,,1

• The local gradient is:
𝑔⃗ = 45678 𝑦+ 𝑥+

4,
= ∑1∈3 ϕ 𝑥+, 𝑦+ − ϕ 𝑥+, 𝑐 𝑃 𝑦 = 𝑐 𝑥+
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Multi-class log-linear models

SGD training for multi-class log-linear models
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Mini-batch SGD

A compromise between gradient descent and SGD training.

Split the set of training examples D into several equal-sized subsets 
𝐷#, 𝐷+, … , 𝐷,, each containing 𝑁/𝑀 training examples.

The mini-batch size 𝑁/𝑀 controls the tradeoff between 
efficiency and accuracy of approximation.
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Mini-batch SGD
Mini-batch gradient descent for binary classification 
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Review log-linear model

• Target: 𝑃(𝑦|𝑥)

• Parameterization

F
𝑃 𝑦 𝑥 = 𝜎(θ ⋅ ϕ 𝑥 )

𝑃 𝑦 𝑥 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (θ ⋅ ϕ(𝑥, 𝑦))

• Testing
H𝑦 = argmax

9
𝑃(𝑦|𝑥)

• Training
MLE using SGD



25

Test scenario of log-linear models

• Given a test input x, find !𝑦 = argmax
.∈0

𝑃 𝑦 𝑥 , which is equal to 

argmax
.∈0

θ ⋅ ϕ 𝑥, 𝑦

• The test scenario of log-linear models are identical to those of 

SVMs and perceptron models

• Binary log-linear models are also called logistic regression
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Comparing with Perceptron Binary Classification

binary log-linear models binary perceptron models
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Comparing with Perceptron Multi-class Classification

multi-class log-linear models multi-class perceptron models
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SVM recap
A linear model for binary classification in vector space

Support vectors

SVM hyperplane

Margins

• To maximize margin

(distances form support

vectors to hyperplane)

• To minimize violation, i.e.,

ensuring all data residing

to the right side
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Binary classification SVM
• The training objective of binary classification SVM :

Minimizing )
:
θ

:
+ 𝐶 ∑+max 0,1 − 𝑦+ θ ⋅ ϕ 𝑥+ given 𝐷 = |𝑥+, 𝑦+ +;)

<

• Equivalent to minimizing
∑+max 0,1 − 𝑦+ θ ⋅ ϕ 𝑥+ + )

:
λ|θ|:

hyper-parameters of the model λ = )
1

• Optimization : 

• stochastic gradient descent. SGD

• derive local training objective for each train example
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Binary classification SVM
• The training objective of binary classification SVM :

Minimizing )
:
θ

:
+ 𝐶 ∑+max 0,1 − 𝑦+ θ ⋅ ϕ 𝑥+ given 𝐷 = |𝑥+, 𝑦+ +;)

<

• Equivalent to minimizing
∑+max 0,1 − 𝑦+ θ ⋅ ϕ 𝑥+ + )

:
λ|θ|:

hyper-parameters of the model λ = )
1

• Optimization : 

• stochastic gradient descent. SGD

• derive local training objective for each train example
• Sub-gradient :
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Binary classification SVM

SGD training for binary classification SVM
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Multi-class classification

• The training objective of multi-class SVM is to minimize
)
:

Pθ
:
+ 𝐶 ∑+max 0,1 − θ ⋅ ϕ 𝑥+, 𝑦+ +max

1=9,
θ ⋅ ϕ 𝑥+, 𝑐

• Equivalent to minimizing

∑+max 0,1 − θ ⋅ ϕ 𝑥+, 𝑦+ +max
1=9,

θ ⋅ ϕ 𝑥+, 𝑐 + )
: λ|θ|

:

where 𝑥+, 𝑦+ ∈ 𝐷, λ = )
3 .

• Sub-gradient for each training example:

where z> = argmax
1=9,

θ ⋅ ϕ 𝑥+, 𝑐 .
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Multi-class classification SVM
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Comparing with Perceptron Binary Classification

binary SVM models binary perceptron models
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Comparing with Perceptron Multi-class Classification

multi-class SVM models

• Comparison with perceptron models
• Checks if 𝑦2 θ ⋅ ϕ 𝑥2 ≤ 1 instead of 𝑦2 θ ⋅ ϕ 𝑥2 ≤ 0
• Additional regularization term 𝜆θ
• A learning rate 𝛼 to weight the parameter update

multi-class perceptron models
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A perceptron training objective function

• Perceptron updates can also be viewed as SGD training of a 
certain objective function.

• The training objective is to minimize 

∑!"#* maxM0, −θ ⋅ ϕ 𝑥! , 𝑦! + Omax
-
θ ⋅ ϕ 𝑥! , 𝑐
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Generalized linear classification model

• Discriminative models
• Perceptron
• SVM
• Log-linear models

• Model form identical
𝑠𝑐𝑜𝑟𝑒 𝑦 𝑥 ∝ 𝑓(θ ⋅ ϕ 𝑥, 𝑦 )

• Testing scenario, criteria identical
𝑦 = argmax

.8
𝑠𝑐𝑜𝑟𝑒 𝑦/ 𝑥 = argmax

./
θ ⋅ ϕ 𝑥, 𝑦′

• Training different
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Generalized linear classification model

• parameter vector θ
• feature vector ϕ
• output class label y using the dot product θ ⋅ ϕ
• 𝑓 − activation function

Model and Testing (binary classification case)
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Unified Online Training

• Given a set of training data 𝐷 = |𝑥! , 𝑦! !"#
* , the algorithm goes 

over D for T iterations, processing each training example 
𝑥! , 𝑦! , and update model parameters when necessary.

• All by SGD training
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Unified Online Training

Parameter Update (𝑥! , 𝑦!) for perceptrons, SVMs and log-linear models
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Unified Online Training
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Loss Functions
• The training objectives for linear models can be regarded as to 

minimize different loss functions of a model over a training set.
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Different types of loss functions

• Hinge loss: the loss functions of SVMs and perceptrons
• Log-likelihood loss: the loss functions for log-linear models
• 0/1 loss: loss is 1 for an incorrect output and 0 for a correct output.
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Risks

• The true expected risk of a linear model with parameter can be 
formulated as

𝑟𝑖𝑠𝑘 θ ='
1,.

𝑙𝑜𝑠𝑠 θ ⋅ ϕ 𝑥, 𝑦 𝑃 𝑥, 𝑦 ,

which cannot be calculated, we use empirical risk as a proxy

0𝑟𝑖𝑠𝑘 θ = 3
4
∑5634 𝑙𝑜𝑠𝑠 θ ⋅ ϕ 𝑥5 , 𝑦5 , 𝑥5 , 𝑦5 ∈ 𝐷
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Regularization

• SVM training objective

L=

• A large element in the parameter vector θ implies higher reliance of the 
model to its corresponding feature, sometimes unnecessarily much.

L2 regularization : #
+
λ θ

+

and L1 regularization : λ θ
#

minimize a polynomial of θ in loss functions, 
reduce over-fitting of models on given training data.
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Comparing model performances

• Different models results from:

• different training objectives (large margin or log-likelihood)

• different feature definitions

• different hyperparameters (number of training iterations, learning rate)

• Need to compare accuracies on testset

• Can make combination to exploit complementary strengths



54

Significance test

• Model A 93% Model B 92%

Model A is better?

• Null hypothesis

The probability of null hypothesis – significance level

p < 0.01 / p<0.05 / p < 0.001 / p < 0.000001

• Use the set of test results to evaluate the probability of null 

hypothesis.

• t-test
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T test using python and numpy

import the packages

Hands on

Define 2 random distributions with size N



56

Calculate the standard derivation

Hands on

Calculate the t-statistics and compare with the critical t-value

Results:
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Cross checking with the internal scipy function

Hands on

Results:
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Ensemble models

• Ensemble approach: a combination of multiple models for better accuracies.

• Voting: a simple method to ensemble different models.
Given a set of models 𝑀 = 𝑚6, 𝑚9, …𝑚 : and output classes 𝐶 = 𝑐6, 𝑐9, … , 𝑐 ; ,
the output class y for a given input x can be decided by counting the vote (hard 
0/1votes):
𝑣4 = ∑<=6

: b1 𝑦 𝑚< , 𝑐4

• majority voting chooses the class label that receives more than half the total votes

• plurality voting chooses the class with the most votes.

• More fine-grained voting methods are soft voting and weighted voting.
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Ensemble models
• Stacking: 

use the outputs of one model as features to inform another model.

• Training for stacking

the stacking method trains A after B is trained.

• We use K-fold jackknifing to make model B output accuracies on 

the training data as close to the test scenario as possible.
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Ensemble models

• Bagging use different subsets of D to obtain different models and then 
ensemble them. Voting is then performed between models given a test 
case. Bagging can outperform a single model for many tasks.
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Co-training and self-training

• Data augmentation.

• Semi-supervised learning use different models trained on D
to predict the labels on a set of unlabeled data U, 
augmenting D with the outputs that most models agree on.

• the more accurate the baseline models are on U, the more 
likely that the new data form U can be correct and useful.
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Co-training
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Self-training
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Summary

• Log-linear models for binary and multi-class classification

• Stochastic Gradient Descent (SGD) training of log-linear models and SVMs

• A generalized linear discriminative model for text classification

• The correlation between SVMs, perceptrons and log-linear models in
terms of training objective (loss) functions and regularization terms

• Significance testing

• Ensemble methods for integrating different models


