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What is information?
• Resolve uncertainty about random events.

• To learn the outcome of a random event with n equally 
possible results, 𝑙𝑜𝑔!𝑛 bits of information is necessary.
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Information of event.
• Original uncertainty ---- remaining uncertainty

• Spade Ace: log! 52 − log! 1 = log! 52
• Spade: log! 52 − log! 13 = 2 bits
• Ace: log! 52 − log! 4 = log! 13 bits
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Information for non-uniform distributions

• The outcomes with higher probabilities contains less information.
• For a certain outcome 𝑟"
• Probability: 𝑃 𝑟"
• Information received:−𝑙𝑜𝑔!𝑃 𝑟" .

Red ball:

log!(𝑚 + 𝑟) − log! 𝑛

= log!
𝑚 + 𝑛
𝑛 = log!

1
𝑃(𝑟𝑒𝑑)
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Entropy

• Entropy analyzes information concerning events by 
considering all possible outcomes or random variables by
considering all possible values.

• The entropy of distribution 𝑃 is:

𝐻 𝑃 = −'
!"#

$

𝑃 𝑟! 𝑙𝑜𝑔% 𝑃 𝑟! = 𝐸 𝑙𝑜𝑔%
1

𝑃 𝑟!
• where 𝐸 denotes a probability-weighted average, or 

the mathematical expectation
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Entropy and distribution characteristics

• Encoding six numbers

• Uniform distribution

3 bits 001 010 011 100 101 110

• 90% case with number 1, and 2% with 2, 3, 4, 5, 6

0 1010 1011 1110 1101 1110

0.9 x 1+ 0.1 x 4 =1.3 bits
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Entropy

• Events with uniform output distributions have the largest entropy. 

• The more uneven the distribution is, the smaller the entropy is.
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Occam’s razor

• A principle attributed to 
the fourteenth-century 
English Franciscan friar 
William of Ockham, 
which states that “entities 
should not be multiplied 
beyond necessity”

• Occam’s razor shares 
underlying similarities 
with the maximum 
entropy principle.
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A naive maximum entropy model

A probabilistic model for a random event 𝑒 with possible outcomes 𝑟., 𝑟!, … , 𝑟/ :

:𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐻 𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥 −>
"0.

/

𝑃 𝑟" log! 𝑃(𝑟")

using 𝑃 𝑟" directly as parameters.

The training objective is to find:

:𝑃 𝑒 = argmax𝐻 𝑒 = argmin>
"0.

/

𝑃 𝑟" log! 𝑃 𝑟"

under the constraint that

>
"0.

/

𝑃 𝑟" = 1
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A naive maximum entropy model

Taking each 𝑃 𝑟" as a separate variable, we use Lagrange multipliers to do 
the optimization.

In mathematic optimization, the method of Lagrange multipliers is a strategy 
for finding the local maxima and minima of a function subject to equality 
constraints.
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A naive maximum entropy model
• The Lagrangian equation is

Λ 𝑃 𝑟. , 𝑃 𝑟! , … , 𝑃 𝑟/ , λ = ∑"0./ 𝑃 𝑟" log! 𝑃 𝑟" + λ ∑"0./ 𝑃 𝑟" − 1 ,

where 𝜆 is a Lagrangian multiplier.

• A necessary condition for optimality in the constrained problem is that

12
13 4!

= 0 for 𝑖 ∈ 1…𝑚 => 1 − log! 𝑃 𝑟" + 𝜆 = 0

which suggests that 𝑃 𝑟. = 𝑃 𝑟! = ⋯ = 𝑃 𝑟/

• The conclusion conforms the fact that the uniform distribution contains 
the most uncertainty.
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Conditional entropy

For a conditional probability distribution 𝑃(𝑦|𝑥), given that the 
random event 𝑋 follows a probability distribution 𝑃(𝑥), the 
conditional entropy value:

𝐻 𝑌 𝑋 = −>
5
>

6
𝑃 𝑥 𝑃 𝑦 𝑥 log! 𝑃 𝑦 𝑥

= −>
5

>
6

𝑃 𝑥, 𝑦 log! 𝑃 𝑦 𝑥
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Conditional entropy

For a conditional probability distribution 𝑃(𝑦|𝑥), given that the 
random event 𝑋 follows a probability distribution 𝑃(𝑥), the 
conditional entropy value:

𝐻 𝑌 𝑋 = −>
5
>

6
∑_𝑥𝑃 𝑥 𝑃 𝑦 𝑥 log! 𝑃 𝑦 𝑥

= −>
5

>
6

𝑃 𝑥, 𝑦 log! 𝑃 𝑦 𝑥

Intuition
• Given 𝑥, 𝐻 𝑌 𝑥 = −∑6𝑃 𝑦 𝑥 log! 𝑃(𝑦|𝑥)
• Expectation 𝐻 𝑌 𝑋 = ∑5𝑃 𝑥 𝐻(𝑌|𝑥)
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Maximum entropy model and training data

• We are to derive a maximum entropy model for feature-based discriminative 
classification.

• Training data : 𝐷 = |𝑥", 𝑦" "0.
7

• Feature instances for (x,y) : 𝑓., 𝑓!, … , 𝑓8

• Feature instance : 𝑓" 𝑥, 𝑦 (count)
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Notations

• The model to build : P(y|x)

• Prior distribution of x : P(x)

• Empirical distribution : T𝑃 𝑥 = #5
∑ "#∈% #5# =

#5
|<|

• Model expectation of 𝑓" : 𝐸 𝑓"

• Empirical count of 𝑓": T𝐸 𝑓"
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Modelling the problem

• Objective function : 𝐻 𝑃
• Goal : among all distributions that satisfy the constraints, choose the one 
:𝑃 that maximizes 𝐻 𝑃

:𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐻 𝑃

• Constraints: feature counts.
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Objective

• The conditional entropy to maximize is 
𝐻 𝑌 𝑋 = −∑5∑6𝑃 𝑥 𝑃 𝑦 𝑥 log! 𝑃 𝑦 𝑥

• We use T𝑃 𝑥 = #5
∑"#∈% #5

# =
#5
< to represent P(x), which is typically .< . 

• resulting in 𝐻 𝑌 𝑋 = −∑5∑6 T𝑃 𝑥 𝑃 𝑦 𝑥 log! 𝑃 𝑦 𝑥 , which we maximize
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Constraints

• Model's feature expectation = observed feature expectation 𝐸 𝑓" = T𝐸 𝑓"

• The model feature 

𝐸 𝑓" =>
=0.

<

T𝑃 𝑥= >
6

𝑃 𝑦 𝑥= 𝑓" 𝑥", 𝑦

typically  .
<
∑=0.
< ∑6𝑃 𝑦 𝑥= 𝑓" 𝑥", 𝑦 .

• The empirical feature
T𝐸 𝑓" = ∑=0.

< T𝑃 𝑥=, 𝑦= 𝑓" 𝑥=, 𝑦= 𝑥=, 𝑦= ∈ 𝐷

typically .
<
∑=0.
< 𝑓" 𝑥=, 𝑦= .

• One additional constraint, as before ∑6𝑃 𝑦 𝑥 = 1.
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Using Lagrangian multipliers

• A model :𝑃 𝑦 𝑥 that satisfies
:𝑃 𝑦 𝑥 = arg𝑚𝑖𝑛>

5

>
6

T𝑃 𝑥 𝑃 𝑦 𝑥 log! 𝑃 𝑦 𝑥

s.t. for all 𝑖, 𝐸 𝑓" = T𝐸 𝑓" ; ∑6𝑃 𝑦 𝑥 = 1

• The Lagrangian equation is 

Λ 𝑃, λ = −𝐻 𝑌 𝑋 ++
!"#

$

λ! 𝐸 𝑓! − .𝐸 𝑓! ++
%

λ$&#% +
'

𝑃 𝑦 𝑥 − 1
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Maximum entropy leads to log-linear models

• A necessary condition to the constrained minimum value of -H(Y|X)
is 1213 = 0

• Solving these equations, we have 

𝑃 𝑦 𝑥 =
>?@ ∑! A!B! 5,6

∑&# >?@ ∑! A!B! 5,6#

• This is a log-linear form of P(y|x) using the maximum entropy 
principle, which is the same as a log linear model

• We further find λ via λ = argmin
A
Λ 𝑃, λ = arg min

A
− ∑=𝑃(𝑦" |𝑥" ), 

which is the same as MLE.
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KL-divergence

• Revisit risk. Parameter 𝜃⃗, data 𝐷 = 𝑑" |"0.7

X𝑟𝑖𝑠𝑘 𝜃⃗ = .
7
∑"0.7 𝑙𝑜𝑠𝑠 𝜃⃗ [ 𝜙 𝑑"
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KL-divergence

• Revisit risk. Parameter 𝜃⃗, data 𝐷 = 𝑑" |"0.7

X𝑟𝑖𝑠𝑘 𝜃⃗ = .
7
∑"0.7 𝑙𝑜𝑠𝑠 𝜃⃗ [ 𝜙 𝑑"

• For a probabilistic model

X𝑟𝑖𝑠𝑘 𝜃⃗ = .
7
∑"0.7 𝑑𝑖𝑓𝑓( T𝑃 𝑑" , 𝑄(𝑑"))

where T𝑃 𝑑" is data frequency , 𝑄(𝑑") ismodel probability.
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KL-divergence

• Revisit risk. Parameter 𝜃⃗, data 𝐷 = 𝑑" |"0.7

X𝑟𝑖𝑠𝑘 𝜃⃗ = .
7
∑"0.7 𝑙𝑜𝑠𝑠 𝜃⃗ [ 𝜙 𝑑"

• For a probabilistic model

X𝑟𝑖𝑠𝑘 𝜃⃗ = .
7
∑"0.7 𝑑𝑖𝑓𝑓( T𝑃 𝑑" , 𝑄(𝑑"))

where T𝑃 𝑑" is data frequency , 𝑄(𝑑") ismodel probability.

• diff can be defined

X𝑟𝑖𝑠𝑘 𝜃⃗ = .
7
∑"0.7 log! T𝑃(𝑑") − log!𝑄(𝑑")

= ∑"0.7 T𝑃 𝑑" log! T𝑃 𝑑" − log!𝑄 𝑑" = ∑"0.7 T𝑃 𝑑" log!
D3 E!
F E!
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KL-divergence

• Revisit risk. Parameter 𝜃⃗, data 𝐷 = 𝑑" |"0.7

X𝑟𝑖𝑠𝑘 𝜃⃗ = .
7
∑"0.7 𝑙𝑜𝑠𝑠 𝜃⃗ [ 𝜙 𝑑"

• For a probabilistic model

X𝑟𝑖𝑠𝑘 𝜃⃗ = .
7
∑"0.7 𝑑𝑖𝑓𝑓( T𝑃 𝑑" , 𝑄(𝑑"))

where T𝑃 𝑑" is data frequency , 𝑄(𝑑") ismodel probability.

• diff can be defined

X𝑟𝑖𝑠𝑘 𝜃⃗ = .
7
∑"0.7 log! T𝑃(𝑑") − log!𝑄(𝑑")

= ∑"0.7 T𝑃 𝑑" log! T𝑃 𝑑" − log!𝑄 𝑑" = ∑"0.7 T𝑃 𝑑" log!
D3 E!
F E!
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KL-divergence

• Kullback-Leibler (KL) divergence measures how different two 
distributions of the same random variable are.

• Not symmetric --- how different is 𝑄 according to 𝑃.

• Can measure a probabilistic model against a data distribution.
𝐾𝐿 𝑃, 𝑄 ≥ 0, 𝐾𝐿 𝑃, 𝑄 = 0, where 𝑃 = 𝑄.
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KL-divergence

• Loss function:

• As the first term is constant, the loss effectively maximizes

which is the exactly log-likelihood of the dataset D, namely MLE.
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• The second term of KL-divergence is referred to cross-entropy:

It also measures the similarity between two distributions of the same
random variable.

34

Cross entropy



• The second term of KL-divergence is referred to cross-entropy:

It also measures the similarity between two distributions of the same
random variable.

• Intuitively, it means the number of bits to encode a variable 𝑒 distributed
in 𝑄 using the encoding scheme defined by 𝑃.

Thus 𝐻 𝑃,𝑄 = 𝐻(𝑃) if 𝑄 = 𝑃 and is larger when 𝑄 differs more form 𝑃.
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Cross entropy



• The second term of KL-divergence is referred to cross-entropy:

It also measures the similarity between two distributions of the same
random variable.

• Intuitively, it means the number of bits to encode a variable 𝑒 distributed
in 𝑄 using the encoding scheme defined by 𝑃.

Thus 𝐻 𝑃,𝑄 = 𝐻(𝑃) if 𝑄 = 𝑃 and is larger when 𝑄 differs more form 𝑃.

• KL-divergence is non-negative because:

As a result, KL-divergence is also called relative entropy.
36

Cross entropy



37

Cross entropy loss

• Cross-entropy:

• Cross-entropy loss:

where T𝑃 𝑑" is data frequency, 𝑄(𝑑") ismodel probability.

• The same as negative log-likelihood loss.
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Perplexity

• Formally

• Intuitively, perplexity represents the expected number of bits 
necessary for encoding each outcome. 
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Model Perplexity

• Cross-entropy can also be used as the power term for calculating perplexity.

• This can be useful for model evaluation.

(Model perplexity)

where T𝑃 𝑑" is data frequency, 𝑄(𝑑") ismodel probability.
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Evaluating language models

• For classification, accuracy is the metric.

• For language modeling, no single correct answer.

• For sentence level, 2G
'
(
∑!)'
( HIJ* F K! , typically 2.LM .

• A commonly used evaluation metric for language models 
is per-word perplexity:

typically 10-250.
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Entropy, Cross-Entropy, Mutual Information 

• Entropy – the expected number of bits to encode a random variable.
The number of bits in average when encoding many outcome values.
Optimal encoding scheme.

• Cross-Entropy – the expected number of bits to encode a random variable 
using a different encoding scheme.
Two distributions concerning the same random variable.
• Evaluate model distribution against data distribution
• Calibrate model distribution against data.

• Mutual Information – the expected number of bits you can save for 
encoding a random variable if a second random variable is known.
About two random variables.
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Mutual information

• Measures the correlation between two different random variables X and Y.

• The difference between H(Y) and H(Y|X) is called the mutual information
between X and Y, denoted as I(X,Y)

• 𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋
= ∑5,6𝑃 𝑥, 𝑦 log! 𝑃 𝑦 𝑥 − ∑6𝑃 𝑦 [ log! 𝑃 𝑦
= ∑5,6𝑃 𝑥, 𝑦 log!

3 5,6
3 5 3 6

• It measures the number of bits we can save for encoding Y, if X is known.
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Conditional entropy
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Pointwise mutual information

• Given two random events X and Y, their mutual information can be 
viewed as the expectation of log!

3 5,6
3 5 3 6 over all x, y:

𝐼 𝑥, 𝑦 =>
5,6

𝑃 𝑥, 𝑦 log!
𝑃 𝑥, 𝑦
𝑃 𝑥 𝑃 𝑦

= 𝐸5,6 log!
𝑃 𝑥, 𝑦
𝑃 𝑥 𝑃 𝑦

• For each outcome pair (x,y), log!
3 5,6
3 5 3 6 is called Pointwise Mutual 

information (PMI) between x and y. 
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log!
𝑃 𝑥, 𝑦
𝑃 𝑥 𝑃 𝑦

• PMI represents the statistical correlation between two values
of a random variable, or two outcomes of a random event.

• PMI --- Mutual information
information --- entropy

• PMI can be negative!

Pointwise mutual information
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• The correlation between variables.

- Words and sentiment signals.

- Neighboring words.

- Features and class labels.

Using PMI to mine knowledge from texts
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Learning sentiment lexicons

• Sentiment lexicon contains information about the polarity and 
strength of sentiment words.

• LEX(w) represents the sentiment polarity, and the absolute 
value represents the strength.

𝑆𝐸𝑁𝑇𝐼 𝑑 =
∑" 𝐿𝑒𝑥 𝑤"

𝑤" 𝐿𝑒𝑥 𝑤" ≠ 0
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Learning sentiment lexicons

• The PMI between a word w and a seed word

𝑃𝑀𝐼 𝑤, 𝑠𝑒𝑒𝑑 = 𝑙𝑜𝑔!
3 N,KOOE
3 N P KOOE

𝐿𝐸𝑋 𝑤 = 𝑃𝑀𝐼 𝑤, good − 𝑃𝑀𝐼 𝑤, bad

Emoticons in social media
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Collocation extraction
• Collocation refers to words that are conventionally used together 

for certain meaning.

• Given two words 𝑤. and 𝑤! and a corpus D, there association 
can be calculated using 

𝑃𝑀𝐼 𝑤., 𝑤! = log!
𝑃 𝑤.𝑤!

𝑃 𝑤. 𝑃 𝑤!
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Using PMI to select features

• Feature selection: reduce the size of the feature vector

important features unimportant features

• PMI between feature and class is a commonly used metric for 
feature selection, the higher PMI value, the more likely w is a 
strong indicator of c.
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• Representing a word in vector space

• Useful for measuring semantic correlations

• Thus far we have only learned a ``one-hot’’ representation

PMI and vector representations of words
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PMI and vector representations of words
• Distributional semantics : the company of a word (k-word windows) 

tells us much information about its attributes.

• K-word windows for the word "bank” in
s1 --- There happened to be a rock sticking out of the water halfway between the 
bank and the island
s2 --- The checks that have been written but are not included with the bank 
statement are called outstanding checks
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Word Representation

cat --- 121, dog --- 500, considering vector dot product.
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PMI and vector representations of words

• The vector representation of a word 𝑤" is :

𝑉𝑒𝑐 𝑤" = 𝑃𝑀𝐼 𝑤,𝑤. , 𝑃𝑀𝐼 𝑤,𝑤! , … , 𝑃𝑀𝐼 𝑤,𝑤 Q
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Word Representation

• PMI and TF-IDF.
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PMI and vector representations of words

• 𝑃𝑃𝑀𝐼 𝑢, 𝑣 = max(𝑃𝑀𝐼 𝑢, 𝑣 , 0)

• We use positive PMI (PPMI) to reduce noise and the non-informative.

• Using PPMI, non differentiating words will have a small contribution 
to the distributional word representation.
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Summary

• Entropy and information. 

• The maximum entropy principle for defining probabilistic 
models, and its application in deriving log-linear model forms

• Model perplexity, cross-entropy and KL-divergence for 
measuring the consistence between model distributions and 
data distributions

• Mutual information and pointwise mutual information (PMI) 
for natural language tasks

• Word representations and pointwise mutual information.


